Why? Can anyone answer "why"? Well, perhaps the product engineer, or developer at Mentor that drove the creation of such behavior can answer that. But lacking that, we can only guess. And that's what I'm doing here.
I can think of a few possible use cases, but they aren't something that cannot be done in another manner. For example, one could have a generic "testbench controller" that depending on generics/parameters could invoke certain simulator behavior. (Edit: After re-reading one of your links, I see that's the exact use case.)
For example, say I have this "generic" testbench code as:
module testbench;
parameter LOG_SIGNALS = 1'b0;
initial
begin
if LOG_SIGNALS
begin
// Log all signals in the design
mti_fli::mti_Cmd("add wave -r /*")
end
endmodule
Then, one could invoke this as:
vsim -c -gLOG_SIGNALS=1 work.testbench
The biggest use case for this might be if vsim
is invoked from some environment. If one were to do a do
file, I'm not sure one can pass parameters to the script. Say one had the following do
file:
if {$log_signals} {
add wave -r /*
}
How does one set $log_signals
from the command line? I suppose one could do that through environment variables, such as:
if { [info exists ::env(LOG_SIGNALS)] } {
add wave -r /*
}
Other uses cases might be to turn on/off the capturing of coverage data, list files, maybe even a quirky case of ending simulation.
But of course, all of these can be handled in other manners. And in manners I think are much more clear and much easier to maintain.
As for VerTCL, I find it fascinating. But incomplete. Or at very least barebones. I find scripted testenches exceedingly useful (we use them where I work). And VerTCL is a great way to do it (if you like TCL). But it does need some framework around it to read signals, drive signals, and otherwise manage a simulation.