In case of interest, here is how I ended up solving this problem. I used an edge dataframe with to
nodes, from
nodes, cost
property and capacity
property for each edge to create a constraint matrix. Subsequently, I fed this into a linear optimisation using the lpSolve
package. Step-by-step below.
Start with the edgelist dataframe from my example above
library(magrittr)
# Add edge ID
edgelist$ID <- seq(1, nrow(edgelist))
glimpse(edgelist)
Looks like this:
Observations: 16
Variables: 4
$ from <dbl> 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8
$ to <dbl> 2, 3, 4, 5, 6, 4, 5, 6, 7, 8, 7, 8, 7, 8, 9, 9
$ capacity <dbl> 20, 30, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99
$ cost <dbl> 0, 0, 1, 2, 3, 4, 3, 2, 3, 2, 3, 4, 5, 6, 0, 0
$ ID <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
Create constraints matrix
createConstraintsMatrix <- function(edges, total_flow) {
# Edge IDs to be used as names
names_edges <- edges$ID
# Number of edges
numberof_edges <- length(names_edges)
# Node IDs to be used as names
names_nodes <- c(edges$from, edges$to) %>% unique
# Number of nodes
numberof_nodes <- length(names_nodes)
# Build constraints matrix
constraints <- list(
lhs = NA,
dir = NA,
rhs = NA)
#' Build capacity constraints ------------------------------------------------
#' Flow through each edge should not be larger than capacity.
#' We create one constraint for each edge. All coefficients zero
#' except the ones of the edge in question as one, with a constraint
#' that the result is smaller than or equal to capacity of that edge.
# Flow through individual edges
constraints$lhs <- edges$ID %>%
length %>%
diag %>%
set_colnames(edges$ID) %>%
set_rownames(edges$ID)
# should be smaller than or equal to
constraints$dir <- rep('<=', times = nrow(edges))
# than capacity
constraints$rhs <- edges$capacity
#' Build node flow constraints -----------------------------------------------
#' For each node, find all edges that go to that node
#' and all edges that go from that node. The sum of all inputs
#' and all outputs should be zero. So we set inbound edge coefficients as 1
#' and outbound coefficients as -1. In any viable solution the result should
#' be equal to zero.
nodeflow <- matrix(0,
nrow = numberof_nodes,
ncol = numberof_edges,
dimnames = list(names_nodes, names_edges))
for (i in names_nodes) {
# input arcs
edges_in <- edges %>%
filter(to == i) %>%
select(ID) %>%
unlist
# output arcs
edges_out <- edges %>%
filter(from == i) %>%
select(ID) %>%
unlist
# set input coefficients to 1
nodeflow[
rownames(nodeflow) == i,
colnames(nodeflow) %in% edges_in] <- 1
# set output coefficients to -1
nodeflow[
rownames(nodeflow) == i,
colnames(nodeflow) %in% edges_out] <- -1
}
# But exclude source and target edges
# as the zero-sum flow constraint does not apply to these!
# Source node is assumed to be the one with the minimum ID number
# Sink node is assumed to be the one with the maximum ID number
sourcenode_id <- min(edges$from)
targetnode_id <- max(edges$to)
# Keep node flow values for separate step below
nodeflow_source <- nodeflow[rownames(nodeflow) == sourcenode_id,]
nodeflow_target <- nodeflow[rownames(nodeflow) == targetnode_id,]
# Exclude them from node flow here
nodeflow <- nodeflow[!rownames(nodeflow) %in% c(sourcenode_id, targetnode_id),]
# Add nodeflow to the constraints list
constraints$lhs <- rbind(constraints$lhs, nodeflow)
constraints$dir <- c(constraints$dir, rep('==', times = nrow(nodeflow)))
constraints$rhs <- c(constraints$rhs, rep(0, times = nrow(nodeflow)))
#' Build initialisation constraints ------------------------------------------
#' For the source and the target node, we want all outbound nodes and
#' all inbound nodes to be equal to the sum of flow through the network
#' respectively
# Add initialisation to the constraints list
constraints$lhs <- rbind(constraints$lhs,
source = nodeflow_source,
target = nodeflow_target)
constraints$dir <- c(constraints$dir, rep('==', times = 2))
# Flow should be negative for source, and positive for target
constraints$rhs <- c(constraints$rhs, total_flow * -1, total_flow)
return(constraints)
}
constraintsMatrix <- createConstraintsMatrix(edges, 30)
Should result in something like this
$lhs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2 1 0 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 -1 -1 -1 0 0 0 0 0 0 0 0
4 0 0 1 0 0 1 0 0 -1 -1 0 0 0 0 0 0
5 0 0 0 1 0 0 1 0 0 0 -1 -1 0 0 0 0
6 0 0 0 0 1 0 0 1 0 0 0 0 -1 -1 0 0
7 0 0 0 0 0 0 0 0 1 0 1 0 1 0 -1 0
8 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 -1
source -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
target 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
$dir
[1] "<=" "<=" "<=" "<=" "<=" "<=" "<=" "<=" "<=" "<=" "<=" "<=" "<=" "<="
[15] "<=" "<=" "==" "==" "==" "==" "==" "==" "==" "==" "=="
$rhs
[1] 20 30 99 99 99 99 99 99 99 99 99 99 99 99 99 99 0
[18] 0 0 0 0 0 0 -30 30
Feed constraints to lpSolve
for the ideal solution
library(lpSolve)
# Run lpSolve to find best solution
solution <- lp(
direction = 'min',
objective.in = edgelist$cost,
const.mat = constraintsMatrix$lhs,
const.dir = constraintsMatrix$dir,
const.rhs = constraintsMatrix$rhs)
# Print vector of flow by edge
solution$solution
# Include solution in edge dataframe
edgelist$flow <- solution$solution
Now we can convert our edges to a graph object and plot the solution
library(igraph)
g <- edgelist %>%
# igraph needs "from" and "to" fields in the first two colums
select(from, to, ID, capacity, cost, flow) %>%
# Make into graph object
graph_from_data_frame()
# Get some colours in to visualise cost
E(g)$color[E(g)$cost == 0] <- 'royalblue'
E(g)$color[E(g)$cost == 1] <- 'yellowgreen'
E(g)$color[E(g)$cost == 2] <- 'gold'
E(g)$color[E(g)$cost >= 3] <- 'firebrick'
# Flow as edge size,
# cost as colour
plot(g, edge.width = E(g)$flow)
Hope it's interesting / useful :)
partition2
output:+ 3/6 vertices, named: 3 4 2
This is the minimum cost path? – Cassandracassandredata_frame()
... can you perhaps start with a completely new and empty instance of R (that does not read any custom startup scripts that may alreadylibrary
orrequire
certain packages) and tweak your code until it runs successfully? Thanks! – Astronauticsdata_frame
should be in thetidyverse
package, which I included in my example. This particular bit of the code actually runs without thetidyverse
version, usingdata.frame
instead. You will, however, need othertidyverse
functions to run my code in the answer below. – Gimcrack