Finding all possible combinations of numbers to reach a given sum
Asked Answered
F

32

311

How would you go about testing all possible combinations of additions from a given set N of numbers so they add up to a given final number?

A brief example:

  • Set of numbers to add: N = {1,5,22,15,0,...}
  • Desired result: 12345
Faruq answered 8/1, 2011 at 4:26 Comment(4)
The wikipedia article (en.wikipedia.org/wiki/Subset_sum_problem) even mentions that this problem is a good introduction to the class of NP-complete problems.Ripp
Can we use the same element of the original set more than once? For example if the input is {1,2,3,5} and target 10, is 5 + 5 = 10 an acceptable solution?Roxanaroxane
Just the once. If a whole number is to be repeated it appears as a new element.Faruq
https://mcmap.net/q/99235/-finding-all-possible-combinations-of-numbers-to-reach-a-given-sum shows how to use dynamic programming to avoid unnecessary work in producing answers.Retaretable
S
320

This problem can be solved with a recursive combinations of all possible sums filtering out those that reach the target. Here is the algorithm in Python:

def subset_sum(numbers, target, partial=[]):
    s = sum(partial)

    # check if the partial sum is equals to target
    if s == target: 
        print "sum(%s)=%s" % (partial, target)
    if s >= target:
        return  # if we reach the number why bother to continue
    
    for i in range(len(numbers)):
        n = numbers[i]
        remaining = numbers[i+1:]
        subset_sum(remaining, target, partial + [n]) 
   

if __name__ == "__main__":
    subset_sum([3,9,8,4,5,7,10],15)

    #Outputs:
    #sum([3, 8, 4])=15
    #sum([3, 5, 7])=15
    #sum([8, 7])=15
    #sum([5, 10])=15

This type of algorithms are very well explained in the following Stanford's Abstract Programming lecture - this video is very recommendable to understand how recursion works to generate permutations of solutions.

Edit

The above as a generator function, making it a bit more useful. Requires Python 3.3+ because of yield from.

def subset_sum(numbers, target, partial=[], partial_sum=0):
    if partial_sum == target:
        yield partial
    if partial_sum >= target:
        return
    for i, n in enumerate(numbers):
        remaining = numbers[i + 1:]
        yield from subset_sum(remaining, target, partial + [n], partial_sum + n)

Here is the Java version of the same algorithm:

package tmp;

import java.util.ArrayList;
import java.util.Arrays;

class SumSet {
    static void sum_up_recursive(ArrayList<Integer> numbers, int target, ArrayList<Integer> partial) {
       int s = 0;
       for (int x: partial) s += x;
       if (s == target)
            System.out.println("sum("+Arrays.toString(partial.toArray())+")="+target);
       if (s >= target)
            return;
       for(int i=0;i<numbers.size();i++) {
             ArrayList<Integer> remaining = new ArrayList<Integer>();
             int n = numbers.get(i);
             for (int j=i+1; j<numbers.size();j++) remaining.add(numbers.get(j));
             ArrayList<Integer> partial_rec = new ArrayList<Integer>(partial);
             partial_rec.add(n);
             sum_up_recursive(remaining,target,partial_rec);
       }
    }
    static void sum_up(ArrayList<Integer> numbers, int target) {
        sum_up_recursive(numbers,target,new ArrayList<Integer>());
    }
    public static void main(String args[]) {
        Integer[] numbers = {3,9,8,4,5,7,10};
        int target = 15;
        sum_up(new ArrayList<Integer>(Arrays.asList(numbers)),target);
    }
}

It is exactly the same heuristic. My Java is a bit rusty but I think is easy to understand.

C# conversion of Java solution: (by @JeremyThompson)

public static void Main(string[] args)
{
    List<int> numbers = new List<int>() { 3, 9, 8, 4, 5, 7, 10 };
    int target = 15;
    sum_up(numbers, target);
}

private static void sum_up(List<int> numbers, int target)
{
    sum_up_recursive(numbers, target, new List<int>());
}

private static void sum_up_recursive(List<int> numbers, int target, List<int> partial)
{
    int s = 0;
    foreach (int x in partial) s += x;

    if (s == target)
        Console.WriteLine("sum(" + string.Join(",", partial.ToArray()) + ")=" + target);

    if (s >= target)
        return;

    for (int i = 0; i < numbers.Count; i++)
    {
        List<int> remaining = new List<int>();
        int n = numbers[i];
        for (int j = i + 1; j < numbers.Count; j++) remaining.Add(numbers[j]);

        List<int> partial_rec = new List<int>(partial);
        partial_rec.Add(n);
        sum_up_recursive(remaining, target, partial_rec);
    }
}

Ruby solution: (by @emaillenin)

def subset_sum(numbers, target, partial=[])
  s = partial.inject 0, :+
# check if the partial sum is equals to target

  puts "sum(#{partial})=#{target}" if s == target

  return if s >= target # if we reach the number why bother to continue

  (0..(numbers.length - 1)).each do |i|
    n = numbers[i]
    remaining = numbers.drop(i+1)
    subset_sum(remaining, target, partial + [n])
  end
end

subset_sum([3,9,8,4,5,7,10],15)

Edit: complexity discussion

As others mention this is an NP-hard problem. It can be solved in exponential time O(2^n), for instance for n=10 there will be 1024 possible solutions. If the targets you are trying to reach are in a low range then this algorithm works. So for instance:

subset_sum([1,2,3,4,5,6,7,8,9,10],100000) generates 1024 branches because the target never gets to filter out possible solutions.

On the other hand subset_sum([1,2,3,4,5,6,7,8,9,10],10) generates only 175 branches, because the target to reach 10 gets to filter out many combinations.

If N and Target are big numbers one should move into an approximate version of the solution.

Snowonthemountain answered 8/1, 2011 at 10:50 Comment(14)
Java optimization: ArrayList<Integer> partial_rec = new ArrayList<Integer>(partial); partial_rec.add(n); this does a copy of partial. and thus adds O(N). A better way is to just "partial.add(n)" do the recursion and then "partial.remove(partial.size -1). I reran your code to make sure. It works fineAlbigenses
Python: SyntaxError: invalid syntaxShona
This solution does not work for all cases. Consider [1, 2, 0, 6, -3, 3], 3 - it only outputs [1,2], [0,3], [3] while missing cases such as [6, -3, 3]Towhee
It also doesn't work for every combination, for example [1, 2, 5], 5 only outputs [5], when [1, 1, 1, 1, 1], [2, 2, 1] and [2, 1, 1, 1] are solutions.Susann
hi @msalvadores thanks for the explanations and codes. For me I need to use it to find all possible sums of sets of 6 numbers(but sums in ranges of min of 180 and max of 191) on a 60 number list {1,2,3,4....60}Norite
The reason a solution for LiraNunas question doesnt work is because of this line: if (s>=target)return; When it starts evaluating 6 it determines that its already too big and skips any subsequent iterations for it. This algorithm would only work for positive numbers... One possible solution is to sort the numbers before you start this algorithm, although there probably is a better way. You could also not perform that line and make the algorithm always perform every iteration.Come
How would you go about completely exiting the recursive function after you have found the first target? - If you for instance only needed one answer. (I am referring to the python script)Undis
@SebastianNielsen you probably need to carry over another parameter that accumulates all results. That together with another if-else to test if that parameter has any items in it. If it does then skip the recursion.Snowonthemountain
@Susann that is because of i+1 in remaining = numbers[i+1:]. It looks like that algorithm doesn't allow duplicates.Dimitris
@Susann To get also solutions including duplicates like [1, 1, 3] have a look at https://mcmap.net/q/101348/-find-all-combination-that-sum-to-n-with-multiple-lists (Python)Suborbital
This is an alternative resolution using Backtracking, which tests all combinations quite well. ao.gl/…Idona
I am wondering what is Complexity in O notation of this python algo?Akins
Stanford is written as Standford.Rema
is there any way to run that python code by multiple cores?Lightship
R
42

The solution of this problem has been given a million times on the Internet. The problem is called The coin changing problem. One can find solutions at http://rosettacode.org/wiki/Count_the_coins and mathematical model of it at http://jaqm.ro/issues/volume-5,issue-2/pdfs/patterson_harmel.pdf (or Google coin change problem).

By the way, the Scala solution by Tsagadai, is interesting. This example produces either 1 or 0. As a side effect, it lists on the console all possible solutions. It displays the solution, but fails making it usable in any way.

To be as useful as possible, the code should return a List[List[Int]]in order to allow getting the number of solution (length of the list of lists), the "best" solution (the shortest list), or all the possible solutions.

Here is an example. It is very inefficient, but it is easy to understand.

object Sum extends App {

  def sumCombinations(total: Int, numbers: List[Int]): List[List[Int]] = {

    def add(x: (Int, List[List[Int]]), y: (Int, List[List[Int]])): (Int, List[List[Int]]) = {
      (x._1 + y._1, x._2 ::: y._2)
    }

    def sumCombinations(resultAcc: List[List[Int]], sumAcc: List[Int], total: Int, numbers: List[Int]): (Int, List[List[Int]]) = {
      if (numbers.isEmpty || total < 0) {
        (0, resultAcc)
      } else if (total == 0) {
        (1, sumAcc :: resultAcc)
      } else {
        add(sumCombinations(resultAcc, sumAcc, total, numbers.tail), sumCombinations(resultAcc, numbers.head :: sumAcc, total - numbers.head, numbers))
      }
    }

    sumCombinations(Nil, Nil, total, numbers.sortWith(_ > _))._2
  }

  println(sumCombinations(15, List(1, 2, 5, 10)) mkString "\n")
}

When run, it displays:

List(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
List(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2)
List(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2)
List(1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2)
List(1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2)
List(1, 1, 1, 1, 1, 2, 2, 2, 2, 2)
List(1, 1, 1, 2, 2, 2, 2, 2, 2)
List(1, 2, 2, 2, 2, 2, 2, 2)
List(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5)
List(1, 1, 1, 1, 1, 1, 1, 1, 2, 5)
List(1, 1, 1, 1, 1, 1, 2, 2, 5)
List(1, 1, 1, 1, 2, 2, 2, 5)
List(1, 1, 2, 2, 2, 2, 5)
List(2, 2, 2, 2, 2, 5)
List(1, 1, 1, 1, 1, 5, 5)
List(1, 1, 1, 2, 5, 5)
List(1, 2, 2, 5, 5)
List(5, 5, 5)
List(1, 1, 1, 1, 1, 10)
List(1, 1, 1, 2, 10)
List(1, 2, 2, 10)
List(5, 10)

The sumCombinations() function may be used by itself, and the result may be further analyzed to display the "best" solution (the shortest list), or the number of solutions (the number of lists).

Note that even like this, the requirements may not be fully satisfied. It might happen that the order of each list in the solution be significant. In such a case, each list would have to be duplicated as many time as there are combination of its elements. Or we might be interested only in the combinations that are different.

For example, we might consider that List(5, 10) should give two combinations: List(5, 10) and List(10, 5). For List(5, 5, 5) it could give three combinations or one only, depending on the requirements. For integers, the three permutations are equivalent, but if we are dealing with coins, like in the "coin changing problem", they are not.

Also not stated in the requirements is the question of whether each number (or coin) may be used only once or many times. We could (and we should!) generalize the problem to a list of lists of occurrences of each number. This translates in real life into "what are the possible ways to make an certain amount of money with a set of coins (and not a set of coin values)". The original problem is just a particular case of this one, where we have as many occurrences of each coin as needed to make the total amount with each single coin value.

Rozella answered 20/11, 2012 at 10:31 Comment(2)
This problem is not exactly the same as the coin change problem. OP is asking for all combination, not just the minimal. And, presumably, the integers in the set can be negative. Hence, certain optimizations of the coin change problem are not possible with this problem.Straka
and also this problem allows repetition of items, I'm not sure OP wanted this, but more a knapsack problemNutritious
I
41

A Javascript version:

function subsetSum(numbers, target, partial) {
  var s, n, remaining;

  partial = partial || [];

  // sum partial
  s = partial.reduce(function (a, b) {
    return a + b;
  }, 0);

  // check if the partial sum is equals to target
  if (s === target) {
    console.log("%s=%s", partial.join("+"), target)
  }

  if (s >= target) {
    return;  // if we reach the number why bother to continue
  }

  for (var i = 0; i < numbers.length; i++) {
    n = numbers[i];
    remaining = numbers.slice(i + 1);
    subsetSum(remaining, target, partial.concat([n]));
  }
}

subsetSum([3,9,8,4,5,7,10],15);

// output:
// 3+8+4=15
// 3+5+7=15
// 8+7=15
// 5+10=15
Inglis answered 16/6, 2015 at 14:30 Comment(9)
The code has a mistake in the slice, should be remaining = numbers.slice(); remaining.slice(i + 1); otherwise numbers.slice(i + 1); changes the numbers arrayCompossible
@Emeeus, I don't think that's true. slice returns a (shallow) copy, it does not modify the numbers array.Felafel
@DarioSeidl yes, slice returns a copy, it does not modify the array, that is the point, that is why if you don't assign it into a variable you don't change it. In this case, as I understand we have to pass a modified version, not the original. See this jsfiddle.net/che06t3w/1Compossible
Sorry @Redu but I don't understand what do you mean by "It doesn't even produce what it says in the answer"? and yes the result are "short" or better this algorithm doesn't use combinations of the same element, this algorithm is meant to be like that. Is simply a javascript translation of the Python version that was marked as the correct answer by the author of the question.Inglis
The function doesn't return anything just logs out some figures. What's the plan? To keep a global variable and update it through out the recursion? You might instead chose to carry an accumulating result array and return it when the recursion gets depleted. That's what i mean. I don't like impure code which rely on side effects.Juniorjuniority
@Juniorjuniority the point of the solution as I already said was to reproduce the same algorithm that was marked as correct answer in python... you should be able to transform it in a pure function easily and propose it as an answer :-) ...Inglis
@Juniorjuniority ... for example an easy way to do it is that, we can slightly modify the algorithm and use an inner-function: jsbin.com/lecokaw/edit?js,consoleInglis
Yes. Well ok the given jsbin code in above comment is of course more solid in my humble opinion. Still.. eventhough the accepted answer works on single use of provided set of items, the qulity of the question is low. Looks very much like multiple use of items is essential.Juniorjuniority
The code given doesn't necessarily get all the combinations.. e.g. putting [1,2],3 will only return 1 + 2 = 3 not 1 + 1 + 1 or 2 + 1Griqua
H
35

In Haskell:

filter ((==) 12345 . sum) $ subsequences [1,5,22,15,0,..]

And J:

(]#~12345=+/@>)(]<@#~[:#:@i.2^#)1 5 22 15 0 ...

As you may notice, both take the same approach and divide the problem into two parts: generate each member of the power set, and check each member's sum to the target.

There are other solutions but this is the most straightforward.

Do you need help with either one, or finding a different approach?

Herschelherself answered 8/1, 2011 at 5:31 Comment(3)
Wow, that's some pretty concise code. I'm fine with your answer. I think I just need to read up a bit on algorithms in general. I'll have a look at the syntax of the two languages as you've sparked my curiosity.Faruq
I just installed Haskell to try this out, definitely can't just paste it in and have it execute, not in scope: 'subsequences' any pointers?Parthenos
@HartCO a bit late to the party, but import Data.ListKoester
R
17

There are a lot of solutions so far, but all are of the form generate then filter. Which means that they potentially spend a lot of time working on recursive paths that do not lead to a solution.

Here is a solution that is O(size_of_array * (number_of_sums + number_of_solutions)). In other words it uses dynamic programming to avoid enumerating possible solutions that will never match.

For giggles and grins I made this work with numbers that are both positive and negative, and made it an iterator. It will work for Python 2.3+.

def subset_sum_iter(array, target):
    sign = 1
    array = sorted(array)
    if target < 0:
        array = reversed(array)
        sign = -1
    # Checkpoint A

    last_index = {0: [-1]}
    for i in range(len(array)):
        for s in list(last_index.keys()):
            new_s = s + array[i]
            if 0 < (new_s - target) * sign:
                pass # Cannot lead to target
            elif new_s in last_index:
                last_index[new_s].append(i)
            else:
                last_index[new_s] = [i]
    # Checkpoint B

    # Now yield up the answers.
    def recur(new_target, max_i):
        for i in last_index[new_target]:
            if i == -1:
                yield [] # Empty sum.
            elif max_i <= i:
                break # Not our solution.
            else:
                for answer in recur(new_target - array[i], i):
                    answer.append(array[i])
                    yield answer

    for answer in recur(target, len(array)):
        yield answer

And here is an example of it being used with an array and target where the filtering approach used in other solutions would effectively never finish.

def is_prime(n):
    for i in range(2, n):
        if 0 == n % i:
            return False
        elif n < i * i:
            return True
    if n == 2:
        return True
    else:
        return False


def primes(limit):
    n = 2
    while True:
        if is_prime(n):
            yield(n)
        n = n + 1
        if limit < n:
            break


for answer in subset_sum_iter(primes(1000), 76000):
    print(answer)

This prints all 522 answers in under 2 seconds. The previous approaches would be lucky to find any answers in the current lifetime of the universe. (The full space has 2^168 = 3.74144419156711e+50 possible combinations to run through. That...takes a while.)


Explanation I was asked to explain the code, but explaining data structures is usually more revealing. So I'll explain the data structures.

Let's consider subset_sum_iter([-2, 2, -3, 3, -5, 5, -7, 7, -11, 11], 10).

At checkpoint A, we have realized that our target is positive so sign = 1. And we've sorted our input so that array = [-11, -7, -5, -3, -2, 2, 3, 5, 7, 11]. Since we wind up accessing it by index a lot, here the the map from indexes to values:

0: -11
1:  -7
2:  -5
3:  -3
4:  -2
5:   2
6:   3
7:   5
8:   7
9:  11

By checkpoint B we have used Dynamic Programming to generate our last_index data structure. What does it contain?

last_index = {    
    -28: [4],
    -26: [3, 5],
    -25: [4, 6],
    -24: [5],
    -23: [2, 4, 5, 6, 7],
    -22: [6],
    -21: [3, 4, 5, 6, 7, 8],
    -20: [4, 6, 7],
    -19: [3, 5, 7, 8],
    -18: [1, 4, 5, 6, 7, 8],
    -17: [4, 5, 6, 7, 8, 9],
    -16: [2, 4, 5, 6, 7, 8],
    -15: [3, 5, 6, 7, 8, 9],
    -14: [3, 4, 5, 6, 7, 8, 9],
    -13: [4, 5, 6, 7, 8, 9],
    -12: [2, 4, 5, 6, 7, 8, 9],
    -11: [0, 5, 6, 7, 8, 9],
    -10: [3, 4, 5, 6, 7, 8, 9],
    -9: [4, 5, 6, 7, 8, 9],
    -8: [3, 5, 6, 7, 8, 9],
    -7: [1, 4, 5, 6, 7, 8, 9],
    -6: [5, 6, 7, 8, 9],
    -5: [2, 4, 5, 6, 7, 8, 9],
    -4: [6, 7, 8, 9],
    -3: [3, 5, 6, 7, 8, 9],
    -2: [4, 6, 7, 8, 9],
    -1: [5, 7, 8, 9],
    0: [-1, 5, 6, 7, 8, 9],
    1: [6, 7, 8, 9],
    2: [5, 6, 7, 8, 9],
    3: [6, 7, 8, 9],
    4: [7, 8, 9],
    5: [6, 7, 8, 9],
    6: [7, 8, 9],
    7: [7, 8, 9],
    8: [7, 8, 9],
    9: [8, 9],
    10: [7, 8, 9]
}

(Side note, it is not symmetric because the condition if 0 < (new_s - target) * sign stops us from recording anything past target, which in our case was 10.)

What does this mean? Well, take the entry, 10: [7, 8, 9]. It means that we can wind up at a final sum of 10 with the last number chosen being at indexes 7, 8, or 9. Namely the last number chosen could be 5, 7, or 11.

Let's take a closer look at what happens if we choose index 7. That means we end on a 5. So therefore before we came to index 7, we had to get to 10-5 = 5. And the entry for 5 reads, 5: [6, 7, 8, 9]. So we could have picked index 6, which is 3. While we get to 5 at indexes 7, 8, and 9, we didn't get there before index 7. So our second to last choice has to be the 3 at index 6.

And now we have to get to 5-3 = 2 before index 6. The entry 2 reads: 2: [5, 6, 7, 8, 9]. Again, we only care about the answer at index 5 because the others happened too late. So the third to last choice is has to be the 2 at index 5.

And finally we have to get to 2-2 = 0 before index 5. The entry 0 reads: 0: [-1, 5, 6, 7, 8, 9]. Again we only care about the -1. But -1 isn't an index - in fact I'm using it to signal we're done choosing.

So we just found the solution 2+3+5 = 10. Which is the very first solution we print out.

And now we get to the recur subfunction. Because it is defined inside of our main function, it can see last_index.

The first thing to note is that it calls yield, not return. This makes it into a generator. When you call it you return a special kind of iterator. When you loop over that iterator, you'll get a list of all of the things it can yield. But you get them as it generates them. If it is a long list, you don't put it in memory. (Kind of important because we could get a long list.)

What recur(new_target, max_i) will yield are all of the ways that you could have summed up to new_target using only elements of array with maximum index max_i. That is it answers: "We have to get to new_target before index max_i+1." It is, of course, recursive.

Therefore recur(target, len(array)) is all solutions that reach target using any index at all. Which is what we want.

Retaretable answered 15/10, 2020 at 22:24 Comment(17)
Amazing. This seems almost impossibly fast.Walcoff
Could you please add comment to explain each line of your codes?Bencher
@DinhQuangTuan I added an explanation. It hopefully is clearer than commenting each line of code would have been.Retaretable
@Retaretable It's very kind of you. I am trying to understand. Thank you very much!Bencher
Does it work when the array has duplicate elements?Soerabaja
@西门吹雪 Yes. It keeps track of everything by current value and indexes. So doesn't care if the current value appears anywhere else.Retaretable
What if I only want to get one answer, and the result is different each time? In other words, last_index only needs to have a set of structures that can get the answer (like {0:[...],2:[... ],5:[...],10:[...]}) then stop loop Checkpoint A, and execute subset_sum_iter([-2, 2, -3, 3, -5, 5, -7, 7, -11, 11], 10) results are different.Soerabaja
@西门吹雪 Currently last_index is a dictionary of value: [array of indices]. Change that to value: [array of pairs (index, count)]. After that change you can count solutions, generate any particular one, find a random one, etc.Retaretable
@Retaretable Does index mean the index of value in array, but I don't understand what count means, Could you give a simple example and explanation?Soerabaja
@西门吹雪 See #56781501 for another example where I use dynamic programming to create a structure which includes such counts, and then use it to be able to identify/produce solutions based on where they are in the whole list.Retaretable
@Retaretable I've seen your solution. Actually, I need to randomly select a combination from an array with duplicate elements and it's sum equals n, and avoid find all possible combinations.Soerabaja
@西门吹雪 Please ask yours as a new question. And specify how exactly duplicate values should be handled. For example if we're trying to add up to 3 out of [1, 2, 2, 3] should 1+2 appear twice as often as 3 does as the answer, or should they be equally common?Retaretable
@Retaretable Yes. I asked a new question. Are you interested in solving it? #71353485.Soerabaja
This solution is the best I've seen. But question: if I were to calculate the largest possible number for a given set size, would that have roughly the same reduction in complexity as your filter-first approach? E.g. sum of 10, then highest possible number for a set size of 3 would be 7. That's assuming all positive integers between 1 and N are available to use.Intersex
@Intersex This doesn't assume all positive numbers in a range are available. But under specific conditions where every sum in some range is reachable, you can get similar performance. But usually, just knowing that a number is in the range you can reach doesn't mean that you can reach it. And that is where I am faster.Retaretable
I know this solution doesn't assume that, but it does support the use case I described. Did a benchmark passing ([1..n], n) to the generator. n = 100 -> 0.5s, n = 150 -> 24s, n = 200 -> 656s. So unfortunately, only usable up to about 100, as it scales poorly.Intersex
@Intersex It "scales poorly" because you're generating all solutions when you only want to know about some or a small number of them. That is a lot of solutions to generate for no use. There are ways to only generate the ones you want, and then it would scale much better.Retaretable
S
13

C++ version of the same algorithm

#include <iostream>
#include <list>
void subset_sum_recursive(std::list<int> numbers, int target, std::list<int> partial)
{
        int s = 0;
        for (std::list<int>::const_iterator cit = partial.begin(); cit != partial.end(); cit++)
        {
            s += *cit;
        }
        if(s == target)
        {
                std::cout << "sum([";

                for (std::list<int>::const_iterator cit = partial.begin(); cit != partial.end(); cit++)
                {
                    std::cout << *cit << ",";
                }
                std::cout << "])=" << target << std::endl;
        }
        if(s >= target)
            return;
        int n;
        for (std::list<int>::const_iterator ai = numbers.begin(); ai != numbers.end(); ai++)
        {
            n = *ai;
            std::list<int> remaining;
            for(std::list<int>::const_iterator aj = ai; aj != numbers.end(); aj++)
            {
                if(aj == ai)continue;
                remaining.push_back(*aj);
            }
            std::list<int> partial_rec=partial;
            partial_rec.push_back(n);
            subset_sum_recursive(remaining,target,partial_rec);

        }
}

void subset_sum(std::list<int> numbers,int target)
{
    subset_sum_recursive(numbers,target,std::list<int>());
}
int main()
{
    std::list<int> a;
    a.push_back (3); a.push_back (9); a.push_back (8);
    a.push_back (4);
    a.push_back (5);
    a.push_back (7);
    a.push_back (10);
    int n = 15;
    //std::cin >> n;
    subset_sum(a, n);
    return 0;
}
Sinter answered 19/3, 2013 at 10:9 Comment(0)
B
12

C# version of @msalvadores code answer

void Main()
{
    int[] numbers = {3,9,8,4,5,7,10};
    int target = 15;
    sum_up(new List<int>(numbers.ToList()),target);
}

static void sum_up_recursive(List<int> numbers, int target, List<int> part)
{
   int s = 0;
   foreach (int x in part)
   {
       s += x;
   }
   if (s == target)
   {
        Console.WriteLine("sum(" + string.Join(",", part.Select(n => n.ToString()).ToArray()) + ")=" + target);
   }
   if (s >= target)
   {
        return;
   }
   for (int i = 0;i < numbers.Count;i++)
   {
         var remaining = new List<int>();
         int n = numbers[i];
         for (int j = i + 1; j < numbers.Count;j++)
         {
             remaining.Add(numbers[j]);
         }
         var part_rec = new List<int>(part);
         part_rec.Add(n);
         sum_up_recursive(remaining,target,part_rec);
   }
}
static void sum_up(List<int> numbers, int target)
{
    sum_up_recursive(numbers,target,new List<int>());
}
Bowrah answered 8/5, 2012 at 20:25 Comment(0)
S
9

Java non-recursive version that simply keeps adding elements and redistributing them amongst possible values. 0's are ignored and works for fixed lists (what you're given is what you can play with) or a list of repeatable numbers.

import java.util.*;

public class TestCombinations {

    public static void main(String[] args) {
        ArrayList<Integer> numbers = new ArrayList<>(Arrays.asList(0, 1, 2, 2, 5, 10, 20));
        LinkedHashSet<Integer> targets = new LinkedHashSet<Integer>() {{
            add(4);
            add(10);
            add(25);
        }};

        System.out.println("## each element can appear as many times as needed");
        for (Integer target: targets) {
            Combinations combinations = new Combinations(numbers, target, true);
            combinations.calculateCombinations();
            for (String solution: combinations.getCombinations()) {
                System.out.println(solution);
            }
        }

        System.out.println("## each element can appear only once");
        for (Integer target: targets) {
            Combinations combinations = new Combinations(numbers, target, false);
            combinations.calculateCombinations();
            for (String solution: combinations.getCombinations()) {
                System.out.println(solution);
            }
        }
    }

    public static class Combinations {
        private boolean allowRepetitions;
        private int[] repetitions;
        private ArrayList<Integer> numbers;
        private Integer target;
        private Integer sum;
        private boolean hasNext;
        private Set<String> combinations;

        /**
         * Constructor.
         *
         * @param numbers Numbers that can be used to calculate the sum.
         * @param target  Target value for sum.
         */
        public Combinations(ArrayList<Integer> numbers, Integer target) {
            this(numbers, target, true);
        }

        /**
         * Constructor.
         *
         * @param numbers Numbers that can be used to calculate the sum.
         * @param target  Target value for sum.
         */
        public Combinations(ArrayList<Integer> numbers, Integer target, boolean allowRepetitions) {
            this.allowRepetitions = allowRepetitions;
            if (this.allowRepetitions) {
                Set<Integer> numbersSet = new HashSet<>(numbers);
                this.numbers = new ArrayList<>(numbersSet);
            } else {
                this.numbers = numbers;
            }
            this.numbers.removeAll(Arrays.asList(0));
            Collections.sort(this.numbers);

            this.target = target;
            this.repetitions = new int[this.numbers.size()];
            this.combinations = new LinkedHashSet<>();

            this.sum = 0;
            if (this.repetitions.length > 0)
                this.hasNext = true;
            else
                this.hasNext = false;
        }

        /**
         * Calculate and return the sum of the current combination.
         *
         * @return The sum.
         */
        private Integer calculateSum() {
            this.sum = 0;
            for (int i = 0; i < repetitions.length; ++i) {
                this.sum += repetitions[i] * numbers.get(i);
            }
            return this.sum;
        }

        /**
         * Redistribute picks when only one of each number is allowed in the sum.
         */
        private void redistribute() {
            for (int i = 1; i < this.repetitions.length; ++i) {
                if (this.repetitions[i - 1] > 1) {
                    this.repetitions[i - 1] = 0;
                    this.repetitions[i] += 1;
                }
            }
            if (this.repetitions[this.repetitions.length - 1] > 1)
                this.repetitions[this.repetitions.length - 1] = 0;
        }

        /**
         * Get the sum of the next combination. When 0 is returned, there's no other combinations to check.
         *
         * @return The sum.
         */
        private Integer next() {
            if (this.hasNext && this.repetitions.length > 0) {
                this.repetitions[0] += 1;
                if (!this.allowRepetitions)
                    this.redistribute();
                this.calculateSum();

                for (int i = 0; i < this.repetitions.length && this.sum != 0; ++i) {
                    if (this.sum > this.target) {
                        this.repetitions[i] = 0;
                        if (i + 1 < this.repetitions.length) {
                            this.repetitions[i + 1] += 1;
                            if (!this.allowRepetitions)
                                this.redistribute();
                        }
                        this.calculateSum();
                    }
                }

                if (this.sum.compareTo(0) == 0)
                    this.hasNext = false;
            }
            return this.sum;
        }

        /**
         * Calculate all combinations whose sum equals target.
         */
        public void calculateCombinations() {
            while (this.hasNext) {
                if (this.next().compareTo(target) == 0)
                    this.combinations.add(this.toString());
            }
        }

        /**
         * Return all combinations whose sum equals target.
         *
         * @return Combinations as a set of strings.
         */
        public Set<String> getCombinations() {
            return this.combinations;
        }

        @Override
        public String toString() {
            StringBuilder stringBuilder = new StringBuilder("" + sum + ": ");
            for (int i = 0; i < repetitions.length; ++i) {
                for (int j = 0; j < repetitions[i]; ++j) {
                    stringBuilder.append(numbers.get(i) + " ");
                }
            }
            return stringBuilder.toString();
        }
    }
}

Sample input:

numbers: 0, 1, 2, 2, 5, 10, 20
targets: 4, 10, 25

Sample output:

## each element can appear as many times as needed
4: 1 1 1 1 
4: 1 1 2 
4: 2 2 
10: 1 1 1 1 1 1 1 1 1 1 
10: 1 1 1 1 1 1 1 1 2 
10: 1 1 1 1 1 1 2 2 
10: 1 1 1 1 2 2 2 
10: 1 1 2 2 2 2 
10: 2 2 2 2 2 
10: 1 1 1 1 1 5 
10: 1 1 1 2 5 
10: 1 2 2 5 
10: 5 5 
10: 10 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 
25: 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 
25: 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 
25: 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 
25: 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 
25: 1 1 1 2 2 2 2 2 2 2 2 2 2 2 
25: 1 2 2 2 2 2 2 2 2 2 2 2 2 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 5 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 5 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 5 
25: 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 5 
25: 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 5 
25: 1 1 1 1 1 1 1 1 2 2 2 2 2 2 5 
25: 1 1 1 1 1 1 2 2 2 2 2 2 2 5 
25: 1 1 1 1 2 2 2 2 2 2 2 2 5 
25: 1 1 2 2 2 2 2 2 2 2 2 5 
25: 2 2 2 2 2 2 2 2 2 2 5 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 5 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 2 5 5 
25: 1 1 1 1 1 1 1 1 1 1 1 2 2 5 5 
25: 1 1 1 1 1 1 1 1 1 2 2 2 5 5 
25: 1 1 1 1 1 1 1 2 2 2 2 5 5 
25: 1 1 1 1 1 2 2 2 2 2 5 5 
25: 1 1 1 2 2 2 2 2 2 5 5 
25: 1 2 2 2 2 2 2 2 5 5 
25: 1 1 1 1 1 1 1 1 1 1 5 5 5 
25: 1 1 1 1 1 1 1 1 2 5 5 5 
25: 1 1 1 1 1 1 2 2 5 5 5 
25: 1 1 1 1 2 2 2 5 5 5 
25: 1 1 2 2 2 2 5 5 5 
25: 2 2 2 2 2 5 5 5 
25: 1 1 1 1 1 5 5 5 5 
25: 1 1 1 2 5 5 5 5 
25: 1 2 2 5 5 5 5 
25: 5 5 5 5 5 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 2 10 
25: 1 1 1 1 1 1 1 1 1 1 1 2 2 10 
25: 1 1 1 1 1 1 1 1 1 2 2 2 10 
25: 1 1 1 1 1 1 1 2 2 2 2 10 
25: 1 1 1 1 1 2 2 2 2 2 10 
25: 1 1 1 2 2 2 2 2 2 10 
25: 1 2 2 2 2 2 2 2 10 
25: 1 1 1 1 1 1 1 1 1 1 5 10 
25: 1 1 1 1 1 1 1 1 2 5 10 
25: 1 1 1 1 1 1 2 2 5 10 
25: 1 1 1 1 2 2 2 5 10 
25: 1 1 2 2 2 2 5 10 
25: 2 2 2 2 2 5 10 
25: 1 1 1 1 1 5 5 10 
25: 1 1 1 2 5 5 10 
25: 1 2 2 5 5 10 
25: 5 5 5 10 
25: 1 1 1 1 1 10 10 
25: 1 1 1 2 10 10 
25: 1 2 2 10 10 
25: 5 10 10 
25: 1 1 1 1 1 20 
25: 1 1 1 2 20 
25: 1 2 2 20 
25: 5 20 
## each element can appear only once
4: 2 2 
10: 1 2 2 5 
10: 10 
25: 1 2 2 20 
25: 5 20
Soma answered 22/2, 2018 at 12:36 Comment(0)
W
5
Thank you.. ephemient

i have converted above logic from python to php..

<?php
$data = array(array(2,3,5,10,15),array(4,6,23,15,12),array(23,34,12,1,5));
$maxsum = 25;

print_r(bestsum($data,$maxsum));  //function call

function bestsum($data,$maxsum)
{
$res = array_fill(0, $maxsum + 1, '0');
$res[0] = array();              //base case
foreach($data as $group)
{
 $new_res = $res;               //copy res

  foreach($group as $ele)
  {
    for($i=0;$i<($maxsum-$ele+1);$i++)
    {   
        if($res[$i] != 0)
        {
            $ele_index = $i+$ele;
            $new_res[$ele_index] = $res[$i];
            $new_res[$ele_index][] = $ele;
        }
    }
  }

  $res = $new_res;
}

 for($i=$maxsum;$i>0;$i--)
  {
    if($res[$i]!=0)
    {
        return $res[$i];
        break;
    }
  }
return array();
}
?>
Wariness answered 26/1, 2012 at 19:31 Comment(0)
M
5

Another python solution would be to use the itertools.combinations module as follows:

#!/usr/local/bin/python

from itertools import combinations

def find_sum_in_list(numbers, target):
    results = []
    for x in range(len(numbers)):
        results.extend(
            [   
                combo for combo in combinations(numbers ,x)  
                    if sum(combo) == target
            ]   
        )   

    print results

if __name__ == "__main__":
    find_sum_in_list([3,9,8,4,5,7,10], 15)

Output: [(8, 7), (5, 10), (3, 8, 4), (3, 5, 7)]

Matthews answered 15/5, 2012 at 21:21 Comment(3)
it doesn't work eg: find_sum_in_list(range(0,8), 4). Found: [(4,), (0, 4), (1, 3), (0, 1, 3)] . But (2 , 2) is an option too!Stiles
@AndreAraujo: makes no sense to use 0, but if you use (1,8) then itertools.combinations_with_replacement works and also outputs 2,2.Placido
@Placido Yes, man! The problem was the replacement! Thanks! ;-)Stiles
O
4

I thought I'd use an answer from this question but I couldn't, so here is my answer. It is using a modified version of an answer in Structure and Interpretation of Computer Programs. I think this is a better recursive solution and should please the purists more.

My answer is in Scala (and apologies if my Scala sucks, I've just started learning it). The findSumCombinations craziness is to sort and unique the original list for the recursion to prevent dupes.

def findSumCombinations(target: Int, numbers: List[Int]): Int = {
  cc(target, numbers.distinct.sortWith(_ < _), List())
}

def cc(target: Int, numbers: List[Int], solution: List[Int]): Int = {
  if (target == 0) {println(solution); 1 }
  else if (target < 0 || numbers.length == 0) 0
  else 
    cc(target, numbers.tail, solution) 
    + cc(target - numbers.head, numbers, numbers.head :: solution)
}

To use it:

 > findSumCombinations(12345, List(1,5,22,15,0,..))
 * Prints a whole heap of lists that will sum to the target *
Overgrow answered 21/9, 2012 at 7:19 Comment(0)
D
4

Excel VBA version below. I needed to implement this in VBA (not my preference, don't judge me!), and used the answers on this page for the approach. I'm uploading in case others also need a VBA version.

Option Explicit

Public Sub SumTarget()
    Dim numbers(0 To 6)  As Long
    Dim target As Long

    target = 15
    numbers(0) = 3: numbers(1) = 9: numbers(2) = 8: numbers(3) = 4: numbers(4) = 5
    numbers(5) = 7: numbers(6) = 10

    Call SumUpTarget(numbers, target)
End Sub

Public Sub SumUpTarget(numbers() As Long, target As Long)
    Dim part() As Long
    Call SumUpRecursive(numbers, target, part)
End Sub

Private Sub SumUpRecursive(numbers() As Long, target As Long, part() As Long)

    Dim s As Long, i As Long, j As Long, num As Long
    Dim remaining() As Long, partRec() As Long
    s = SumArray(part)

    If s = target Then Debug.Print "SUM ( " & ArrayToString(part) & " ) = " & target
    If s >= target Then Exit Sub

    If (Not Not numbers) <> 0 Then
        For i = 0 To UBound(numbers)
            Erase remaining()
            num = numbers(i)
            For j = i + 1 To UBound(numbers)
                AddToArray remaining, numbers(j)
            Next j
            Erase partRec()
            CopyArray partRec, part
            AddToArray partRec, num
            SumUpRecursive remaining, target, partRec
        Next i
    End If

End Sub

Private Function ArrayToString(x() As Long) As String
    Dim n As Long, result As String
    result = "{" & x(n)
    For n = LBound(x) + 1 To UBound(x)
        result = result & "," & x(n)
    Next n
    result = result & "}"
    ArrayToString = result
End Function

Private Function SumArray(x() As Long) As Long
    Dim n As Long
    SumArray = 0
    If (Not Not x) <> 0 Then
        For n = LBound(x) To UBound(x)
            SumArray = SumArray + x(n)
        Next n
    End If
End Function

Private Sub AddToArray(arr() As Long, x As Long)
    If (Not Not arr) <> 0 Then
        ReDim Preserve arr(0 To UBound(arr) + 1)
    Else
        ReDim Preserve arr(0 To 0)
    End If
    arr(UBound(arr)) = x
End Sub

Private Sub CopyArray(destination() As Long, source() As Long)
    Dim n As Long
    If (Not Not source) <> 0 Then
        For n = 0 To UBound(source)
                AddToArray destination, source(n)
        Next n
    End If
End Sub

Output (written to the Immediate window) should be:

SUM ( {3,8,4} ) = 15
SUM ( {3,5,7} ) = 15
SUM ( {8,7} ) = 15
SUM ( {5,10} ) = 15 
Dotation answered 12/1, 2014 at 14:55 Comment(0)
N
4

Here's a solution in R

subset_sum = function(numbers,target,partial=0){
  if(any(is.na(partial))) return()
  s = sum(partial)
  if(s == target) print(sprintf("sum(%s)=%s",paste(partial[-1],collapse="+"),target))
  if(s > target) return()
  for( i in seq_along(numbers)){
    n = numbers[i]
    remaining = numbers[(i+1):length(numbers)]
    subset_sum(remaining,target,c(partial,n))
  }
}
Neau answered 20/9, 2017 at 18:31 Comment(3)
I am searching for a solution in R, but this one doesn't work for me. For example, subset_sum(numbers = c(1:2), target = 5) returns "sum(1+2+2)=5". But combination 1+1+1+1+1 is missing. Setting targets to higher numbers (e.g. 20) is missing even more combinations.Eusporangiate
What you describe is not what the function is intended to return. Look at the accepted answer. The fact that 2 is repeated twice is an artifact of how R generates and subsets series, not intended behavior.Neau
subset_sum(1:2, 4) should return no solutions because there is no combination of 1 and 2 that adds to 4. What needs to be added to my function is an escape if i is greater than the length of numbersNeau
D
4

Perl version (of the leading answer):

use strict;

sub subset_sum {
  my ($numbers, $target, $result, $sum) = @_;

  print 'sum('.join(',', @$result).") = $target\n" if $sum == $target;
  return if $sum >= $target;

  subset_sum([@$numbers[$_ + 1 .. $#$numbers]], $target, 
             [@{$result||[]}, $numbers->[$_]], $sum + $numbers->[$_])
    for (0 .. $#$numbers);
}

subset_sum([3,9,8,4,5,7,10,6], 15);

Result:

sum(3,8,4) = 15
sum(3,5,7) = 15
sum(9,6) = 15
sum(8,7) = 15
sum(4,5,6) = 15
sum(5,10) = 15

Javascript version:

const subsetSum = (numbers, target, partial = [], sum = 0) => {
  if (sum < target)
    numbers.forEach((num, i) =>
      subsetSum(numbers.slice(i + 1), target, partial.concat([num]), sum + num));
  else if (sum == target)
    console.log('sum(%s) = %s', partial.join(), target);
}

subsetSum([3,9,8,4,5,7,10,6], 15);

Javascript one-liner that actually returns results (instead of printing it):

const subsetSum=(n,t,p=[],s=0,r=[])=>(s<t?n.forEach((l,i)=>subsetSum(n.slice(i+1),t,[...p,l],s+l,r)):s==t?r.push(p):0,r);

console.log(subsetSum([3,9,8,4,5,7,10,6], 15));

And my favorite, one-liner with callback:

const subsetSum=(n,t,cb,p=[],s=0)=>s<t?n.forEach((l,i)=>subsetSum(n.slice(i+1),t,cb,[...p,l],s+l)):s==t?cb(p):0;

subsetSum([3,9,8,4,5,7,10,6], 15, console.log);
Donyadoodad answered 2/2, 2020 at 9:21 Comment(1)
How would you make it work to get the closest sum combinations in case there is no exact sum result? hopefully in javascriptEtude
R
3

Very efficient algorithm using tables i wrote in c++ couple a years ago.

If you set PRINT 1 it will print all combinations(but it wont be use the efficient method).

Its so efficient that it calculate more than 10^14 combinations in less than 10ms.

#include <stdio.h>
#include <stdlib.h>
//#include "CTime.h"

#define SUM 300
#define MAXNUMsSIZE 30

#define PRINT 0


long long CountAddToSum(int,int[],int,const int[],int);
void printr(const int[], int);
long long table1[SUM][MAXNUMsSIZE];

int main()
{
    int Nums[]={3,4,5,6,7,9,13,11,12,13,22,35,17,14,18,23,33,54};
    int sum=SUM;
    int size=sizeof(Nums)/sizeof(int);
    int i,j,a[]={0};
    long long N=0;
    //CTime timer1;

    for(i=0;i<SUM;++i) 
        for(j=0;j<MAXNUMsSIZE;++j) 
            table1[i][j]=-1;

    N = CountAddToSum(sum,Nums,size,a,0); //algorithm
    //timer1.Get_Passd();

    //printf("\nN=%lld time=%.1f ms\n", N,timer1.Get_Passd());
    printf("\nN=%lld \n", N);
    getchar();
    return 1;
}

long long CountAddToSum(int s, int arr[],int arrsize, const int r[],int rsize)
{
    static int totalmem=0, maxmem=0;
    int i,*rnew;
    long long result1=0,result2=0;

    if(s<0) return 0;
    if (table1[s][arrsize]>0 && PRINT==0) return table1[s][arrsize];
    if(s==0)
    {
        if(PRINT) printr(r, rsize);
        return 1;
    }
    if(arrsize==0) return 0;

    //else
    rnew=(int*)malloc((rsize+1)*sizeof(int));

    for(i=0;i<rsize;++i) rnew[i]=r[i]; 
    rnew[rsize]=arr[arrsize-1];

    result1 =  CountAddToSum(s,arr,arrsize-1,rnew,rsize);
    result2 =  CountAddToSum(s-arr[arrsize-1],arr,arrsize,rnew,rsize+1);
    table1[s][arrsize]=result1+result2;
    free(rnew);

    return result1+result2;

}

void printr(const int r[], int rsize)
{
    int lastr=r[0],count=0,i;
    for(i=0; i<rsize;++i) 
    {
        if(r[i]==lastr)
            count++;
        else
        {
            printf(" %d*%d ",count,lastr);
            lastr=r[i];
            count=1;
        }
    }
    if(r[i-1]==lastr) printf(" %d*%d ",count,lastr);

    printf("\n");

}
Rager answered 16/10, 2013 at 11:45 Comment(1)
hi there! I need a code to do something like that, find all possible sums of sets of 6 numbers in a list of 60 numbers. The sums should be in range of min 180, max 191. Could that code be adjusted for that? Where to run that code on cloud? I tried with no success at CodenvyNorite
H
3

Here is a Java version which is well suited for small N and very large target sum, when complexity O(t*N) (the dynamic solution) is greater than the exponential algorithm. My version uses a meet in the middle attack, along with a little bit shifting in order to reduce the complexity from the classic naive O(n*2^n) to O(2^(n/2)).

If you want to use this for sets with between 32 and 64 elements, you should change the int which represents the current subset in the step function to a long although performance will obviously drastically decrease as the set size increases. If you want to use this for a set with odd number of elements, you should add a 0 to the set to make it even numbered.

import java.util.ArrayList;
import java.util.List;

public class SubsetSumMiddleAttack {
    static final int target = 100000000;
    static final int[] set = new int[]{ ... };

    static List<Subset> evens = new ArrayList<>();
    static List<Subset> odds = new ArrayList<>();

    static int[][] split(int[] superSet) {
        int[][] ret = new int[2][superSet.length / 2]; 

        for (int i = 0; i < superSet.length; i++) ret[i % 2][i / 2] = superSet[i];

        return ret;
    }

    static void step(int[] superSet, List<Subset> accumulator, int subset, int sum, int counter) {
        accumulator.add(new Subset(subset, sum));
        if (counter != superSet.length) {
            step(superSet, accumulator, subset + (1 << counter), sum + superSet[counter], counter + 1);
            step(superSet, accumulator, subset, sum, counter + 1);
        }
    }

    static void printSubset(Subset e, Subset o) {
        String ret = "";
        for (int i = 0; i < 32; i++) {
            if (i % 2 == 0) {
                if ((1 & (e.subset >> (i / 2))) == 1) ret += " + " + set[i];
            }
            else {
                if ((1 & (o.subset >> (i / 2))) == 1) ret += " + " + set[i];
            }
        }
        if (ret.startsWith(" ")) ret = ret.substring(3) + " = " + (e.sum + o.sum);
        System.out.println(ret);
    }

    public static void main(String[] args) {
        int[][] superSets = split(set);

        step(superSets[0], evens, 0,0,0);
        step(superSets[1], odds, 0,0,0);

        for (Subset e : evens) {
            for (Subset o : odds) {
                if (e.sum + o.sum == target) printSubset(e, o);
            }
        }
    }
}

class Subset {
    int subset;
    int sum;

    Subset(int subset, int sum) {
        this.subset = subset;
        this.sum = sum;
    }
}
Haeres answered 8/8, 2016 at 13:28 Comment(0)
C
2

This is similar to a coin change problem

public class CoinCount 
{   
public static void main(String[] args)
{
    int[] coins={1,4,6,2,3,5};
    int count=0;

    for (int i=0;i<coins.length;i++)
    {
        count=count+Count(9,coins,i,0);
    }
    System.out.println(count);
}

public static int Count(int Sum,int[] coins,int index,int curSum)
{
    int count=0;

    if (index>=coins.length)
        return 0;

    int sumNow=curSum+coins[index];
    if (sumNow>Sum)
        return 0;
    if (sumNow==Sum)
        return 1;

    for (int i= index+1;i<coins.length;i++)
        count+=Count(Sum,coins,i,sumNow);

    return count;       
}
}
Compartmentalize answered 7/8, 2013 at 2:55 Comment(0)
C
2

I ported the C# sample to Objective-c and didn't see it in the responses:

//Usage
NSMutableArray* numberList = [[NSMutableArray alloc] init];
NSMutableArray* partial = [[NSMutableArray alloc] init];
int target = 16;
for( int i = 1; i<target; i++ )
{ [numberList addObject:@(i)]; }
[self findSums:numberList target:target part:partial];


//*******************************************************************
// Finds combinations of numbers that add up to target recursively
//*******************************************************************
-(void)findSums:(NSMutableArray*)numbers target:(int)target part:(NSMutableArray*)partial
{
    int s = 0;
    for (NSNumber* x in partial)
    { s += [x intValue]; }

    if (s == target)
    { NSLog(@"Sum[%@]", partial); }

    if (s >= target)
    { return; }

    for (int i = 0;i < [numbers count];i++ )
    {
        int n = [numbers[i] intValue];
        NSMutableArray* remaining = [[NSMutableArray alloc] init];
        for (int j = i + 1; j < [numbers count];j++)
        { [remaining addObject:@([numbers[j] intValue])]; }

        NSMutableArray* partRec = [[NSMutableArray alloc] initWithArray:partial];
        [partRec addObject:@(n)];
        [self findSums:remaining target:target part:partRec];
    }
}
Canonicate answered 6/1, 2016 at 16:18 Comment(0)
Y
2

Here is a better version with better output formatting and C++ 11 features:

void subset_sum_rec(std::vector<int> & nums, const int & target, std::vector<int> & partialNums) 
{
    int currentSum = std::accumulate(partialNums.begin(), partialNums.end(), 0);
    if (currentSum > target)
        return;
    if (currentSum == target) 
    {
        std::cout << "sum([";
        for (auto it = partialNums.begin(); it != std::prev(partialNums.end()); ++it)
            cout << *it << ",";
        cout << *std::prev(partialNums.end());
        std::cout << "])=" << target << std::endl;
    }
    for (auto it = nums.begin(); it != nums.end(); ++it) 
    {
        std::vector<int> remaining;
        for (auto it2 = std::next(it); it2 != nums.end(); ++it2)
            remaining.push_back(*it2);

        std::vector<int> partial = partialNums;
        partial.push_back(*it);
        subset_sum_rec(remaining, target, partial);
    }
}
Yate answered 26/3, 2017 at 1:12 Comment(0)
N
2

PHP Version, as inspired by Keith Beller's C# version.

bala's PHP version did not work for me, because I did not need to group numbers. I wanted a simpler implementation with one target value, and a pool of numbers. This function will also prune any duplicate entries.

Edit 25/10/2021: Added the precision argument to support floating point numbers (now requires the bcmath extension).

/**
 * Calculates a subset sum: finds out which combinations of numbers
 * from the numbers array can be added together to come to the target
 * number.
 *
 * Returns an indexed array with arrays of number combinations.
 *
 * Example:
 *
 * <pre>
 * $matches = subset_sum(array(5,10,7,3,20), 25);
 * </pre>
 *
 * Returns:
 *
 * <pre>
 * Array
 * (
 *   [0] => Array
 *   (
 *       [0] => 3
 *       [1] => 5
 *       [2] => 7
 *       [3] => 10
 *   )
 *   [1] => Array
 *   (
 *       [0] => 5
 *       [1] => 20
 *   )
 * )
 * </pre>
 *
 * @param number[] $numbers
 * @param number $target
 * @param array $part
 * @param int $precision
 * @return array[number[]]
 */
function subset_sum($numbers, $target, $precision=0, $part=null)
{
    // we assume that an empty $part variable means this
    // is the top level call.
    $toplevel = false;
    if($part === null) {
        $toplevel = true;
        $part = array();
    }

    $s = 0;
    foreach($part as $x)
    {
        $s = $s + $x;
    }

    // we have found a match!
    if(bccomp((string) $s, (string) $target, $precision) === 0)
    {
        sort($part); // ensure the numbers are always sorted
        return array(implode('|', $part));
    }

    // gone too far, break off
    if($s >= $target)
    {
        return null;
    }

    $matches = array();
    $totalNumbers = count($numbers);

    for($i=0; $i < $totalNumbers; $i++)
    {
        $remaining = array();
        $n = $numbers[$i];

        for($j = $i+1; $j < $totalNumbers; $j++)
        {
            $remaining[] = $numbers[$j];
        }

        $part_rec = $part;
        $part_rec[] = $n;

        $result = subset_sum($remaining, $target, $precision, $part_rec);
        if($result)
        {
            $matches = array_merge($matches, $result);
        }
    }

    if(!$toplevel)
    {
        return $matches;
    }

    // this is the top level function call: we have to
    // prepare the final result value by stripping any
    // duplicate results.
    $matches = array_unique($matches);
    $result = array();
    foreach($matches as $entry)
    {
        $result[] = explode('|', $entry);
    }

    return $result;
}

Example:

$result = subset_sum(array(5, 10, 7, 3, 20), 25);

This will return an indexed array with two number combination arrays:

3, 5, 7, 10
5, 20

Example with floating point numbers:

// Specify the precision in the third argument
$result = subset_sum(array(0.40, 0.03, 0.05), 0.45, 2);

This will return a single match:

0.40, 0.05
Nutt answered 11/4, 2017 at 16:55 Comment(2)
This progam will fail for some floating point comparisons in: // we have found a match! if($s == $target) (see below)Deaconry
You can fix it by using bccomp: // we have found a match! if(bccomp((string) $s, (string) $search, $this->precision) === 0)Deaconry
J
2

Deduce 0 in the first place. Zero is an identiy for addition so it is useless by the monoid laws in this particular case. Also deduce negative numbers as well if you want to climb up to a positive number. Otherwise you would also need subtraction operation.

So... the fastest algorithm you can get on this particular job is as follows given in JS.

function items2T([n,...ns],t){
    var c = ~~(t/n);
    return ns.length ? Array(c+1).fill()
                                 .reduce((r,_,i) => r.concat(items2T(ns, t-n*i).map(s => Array(i).fill(n).concat(s))),[])
                     : t % n ? []
                             : [Array(c).fill(n)];
};

var data = [3, 9, 8, 4, 5, 7, 10],
    result;

console.time("combos");
result = items2T(data, 15);
console.timeEnd("combos");
console.log(JSON.stringify(result));

This is a very fast algorithm but if you sort the data array descending it will be even faster. Using .sort() is insignificant since the algorithm will end up with much less recursive invocations.

Juniorjuniority answered 31/3, 2019 at 20:12 Comment(1)
Nice. It shows that you're an experienced programmer :)Faruq
F
1

To find the combinations using excel - (its fairly easy). (You computer must not be too slow)

  1. Go to this site
  2. Go to the "Sum to Target" page
  3. Download the "Sum to Target" excel file.

    Follow the directions on the website page.

hope this helps.

Foliole answered 30/11, 2012 at 21:56 Comment(0)
H
1

@KeithBeller's answer with slightly changed variable names and some comments.

    public static void Main(string[] args)
    {
        List<int> input = new List<int>() { 3, 9, 8, 4, 5, 7, 10 };
        int targetSum = 15;
        SumUp(input, targetSum);
    }

    public static void SumUp(List<int> input, int targetSum)
    {
        SumUpRecursive(input, targetSum, new List<int>());
    }

    private static void SumUpRecursive(List<int> remaining, int targetSum, List<int> listToSum)
    {
        // Sum up partial
        int sum = 0;
        foreach (int x in listToSum)
            sum += x;

        //Check sum matched
        if (sum == targetSum)
            Console.WriteLine("sum(" + string.Join(",", listToSum.ToArray()) + ")=" + targetSum);

        //Check sum passed
        if (sum >= targetSum)
            return;

        //Iterate each input character
        for (int i = 0; i < remaining.Count; i++)
        {
            //Build list of remaining items to iterate
            List<int> newRemaining = new List<int>();
            for (int j = i + 1; j < remaining.Count; j++)
                newRemaining.Add(remaining[j]);

            //Update partial list
            List<int> newListToSum = new List<int>(listToSum);
            int currentItem = remaining[i];
            newListToSum.Add(currentItem);
            SumUpRecursive(newRemaining, targetSum, newListToSum);
        }
    }'
Heterotopia answered 28/3, 2015 at 19:37 Comment(1)
i tried converting this to dart (List instead of ArrayList) but it's not working. any idea why?Timberwork
K
1

This can be used to print all the answers as well

public void recur(int[] a, int n, int sum, int[] ans, int ind) {
    if (n < 0 && sum != 0)
        return;
    if (n < 0 && sum == 0) {
        print(ans, ind);
        return;
    }
    if (sum >= a[n]) {
        ans[ind] = a[n];
        recur(a, n - 1, sum - a[n], ans, ind + 1);
    }
    recur(a, n - 1, sum, ans, ind);
}

public void print(int[] a, int n) {
    for (int i = 0; i < n; i++)
        System.out.print(a[i] + " ");
    System.out.println();
}

Time Complexity is exponential. Order of 2^n

Kilovoltampere answered 13/5, 2016 at 0:45 Comment(0)
T
1

Swift 3 conversion of Java solution: (by @JeremyThompson)

protocol _IntType { }
extension Int: _IntType {}


extension Array where Element: _IntType {

    func subsets(to: Int) -> [[Element]]? {

        func sum_up_recursive(_ numbers: [Element], _ target: Int, _ partial: [Element], _ solution: inout [[Element]]) {

            var sum: Int = 0
            for x in partial {
                sum += x as! Int
            }

            if sum == target {
                solution.append(partial)
            }

            guard sum < target else {
                return
            }

            for i in stride(from: 0, to: numbers.count, by: 1) {

                var remaining = [Element]()

                for j in stride(from: i + 1, to: numbers.count, by: 1) {
                    remaining.append(numbers[j])
                }

                var partial_rec = [Element](partial)
                partial_rec.append(numbers[i])

                sum_up_recursive(remaining, target, partial_rec, &solution)
            }
        }

        var solutions = [[Element]]()
        sum_up_recursive(self, to, [Element](), &solutions)

        return solutions.count > 0 ? solutions : nil
    }

}

usage:

let numbers = [3, 9, 8, 4, 5, 7, 10]

if let solution = numbers.subsets(to: 15) {
    print(solution) // output: [[3, 8, 4], [3, 5, 7], [8, 7], [5, 10]]
} else {
    print("not possible")
}
Transsonic answered 23/8, 2016 at 9:13 Comment(0)
S
1

I was doing something similar for a scala assignment. Thought of posting my solution here:

 def countChange(money: Int, coins: List[Int]): Int = {
      def getCount(money: Int, remainingCoins: List[Int]): Int = {
        if(money == 0 ) 1
        else if(money < 0 || remainingCoins.isEmpty) 0
        else
          getCount(money, remainingCoins.tail) +
            getCount(money - remainingCoins.head, remainingCoins)
      }
      if(money == 0 || coins.isEmpty) 0
      else getCount(money, coins)
    }
Skycap answered 13/9, 2016 at 10:32 Comment(0)
L
1

Recommended as an answer:

Here's a solution using es2015 generators:

function* subsetSum(numbers, target, partial = [], partialSum = 0) {

  if(partialSum === target) yield partial

  if(partialSum >= target) return

  for(let i = 0; i < numbers.length; i++){
    const remaining = numbers.slice(i + 1)
        , n = numbers[i]

    yield* subsetSum(remaining, target, [...partial, n], partialSum + n)
  }

}

Using generators can actually be very useful because it allows you to pause script execution immediately upon finding a valid subset. This is in contrast to solutions without generators (ie lacking state) which have to iterate through every single subset of numbers

Landward answered 17/11, 2017 at 18:35 Comment(0)
K
1

I did not like the Javascript Solution I saw above. Here is the one I build using partial applying, closures and recursion:

Ok, I was mainly concern about, if the combinations array could satisfy the target requirement, hopefully this approached you will start to find the rest of combinations

Here just set the target and pass the combinations array.

function main() {
    const target = 10
    const getPermutationThatSumT = setTarget(target)
    const permutation = getPermutationThatSumT([1, 4, 2, 5, 6, 7])

    console.log( permutation );
}

the currently implementation I came up with

function setTarget(target) {
    let partial = [];

    return function permute(input) {
        let i, removed;
        for (i = 0; i < input.length; i++) {
            removed = input.splice(i, 1)[0];
            partial.push(removed);

            const sum = partial.reduce((a, b) => a + b)
            if (sum === target) return partial.slice()
            if (sum < target) permute(input)

            input.splice(i, 0, removed);
            partial.pop();
        }
        return null
    };
}
Kagu answered 5/6, 2020 at 22:32 Comment(0)
S
1

An iterative C++ stack solution for a flavor of this problem. Unlike some other iterative solutions, it doesn't make unnecessary copies of intermediate sequences.

#include <vector>
#include <iostream>

// Given a positive integer, return all possible combinations of
// positive integers that sum up to it.

std::vector<std::vector<int>> print_all_sum(int target){
    std::vector<std::vector<int>> output;
    std::vector<int> stack;

    int curr_min = 1;
    int sum = 0;
    while (curr_min < target) {
        sum += curr_min;
        if (sum >= target) {
            if (sum == target) {
                output.push_back(stack); // make a copy
                output.back().push_back(curr_min);
            }
            sum -= curr_min + stack.back();
            curr_min = stack.back() + 1;
            stack.pop_back();
        } else {
            stack.push_back(curr_min);
        }
    }

    return output;
}

int main()
{
    auto vvi = print_all_sum(6);

    for (auto const& v: vvi) {
        for(auto const& i: v) {
        std::cout << i;
        }
        std::cout << "\n";
    }

    return 0;
}

Output print_all_sum(6):

111111
11112
1113
1122
114
123
15
222
24
33
Strident answered 9/12, 2020 at 17:24 Comment(0)
W
0
function solve(n){
    let DP = [];

     DP[0] = DP[1] = DP[2] = 1;
     DP[3] = 2;

    for (let i = 4; i <= n; i++) {
      DP[i] = DP[i-1] + DP[i-3] + DP[i-4];
    }
    return DP[n]
}

console.log(solve(5))

This is a Dynamic Solution for JS to tell how many ways anyone can get the certain sum. This can be the right solution if you think about time and space complexity.

Wingfield answered 5/4, 2020 at 12:35 Comment(0)
A
0
import java.util.*;

public class Main{

     int recursionDepth = 0;
     private int[][] memo;

     public static void main(String []args){
         int[] nums = new int[] {5,2,4,3,1};
         int N = nums.length;
         Main main =  new Main();
         main.memo = new int[N+1][N+1];
         main._findCombo(0, N-1,nums, 8, 0, new LinkedList() );
         System.out.println(main.recursionDepth);
     }


       private void _findCombo(
           int from,
           int to,
           int[] nums,
           int targetSum,
           int currentSum,
           LinkedList<Integer> list){

            if(memo[from][to] != 0) {
                currentSum = currentSum + memo[from][to];
            }

            if(currentSum > targetSum) {
                return;
            }

            if(currentSum ==  targetSum) {
                System.out.println("Found - " +list);
                return;
            }

            recursionDepth++;

           for(int i= from ; i <= to; i++){
               list.add(nums[i]);
               memo[from][i] = currentSum + nums[i];
               _findCombo(i+1, to,nums, targetSum, memo[from][i], list);
                list.removeLast();
           }

     }
}
Agrology answered 27/4, 2020 at 21:0 Comment(0)
T
0
func sum(array : [Int]) -> Int{
    var sum = 0
    array.forEach { (item) in
        sum = item + sum
    }
    return sum
}
func susetNumbers(array :[Int], target : Int, subsetArray: [Int],result : inout [[Int]]) -> [[Int]]{
    let s = sum(array: subsetArray)
    if(s == target){
        print("sum\(subsetArray) = \(target)")
        result.append(subsetArray)
    }
    for i in 0..<array.count{
        let n = array[i]
        let remaning = Array(array[(i+1)..<array.count])
        susetNumbers(array: remaning, target: target, subsetArray: subsetArray + [n], result: &result)
        
    }
    return result
}

 var resultArray = [[Int]]()
    let newA = susetNumbers(array: [1,2,3,4,5], target: 5, subsetArray: [],result:&resultArray)
    print(resultArray)
Twocycle answered 18/10, 2020 at 14:6 Comment(0)

© 2022 - 2024 — McMap. All rights reserved.