There is a socket related function call in my code, that function is from another module thus out of my control, the problem is that it blocks for hours occasionally, which is totally unacceptable, How can I limit the function execution time from my code? I guess the solution must utilize another thread.
I'm not sure how cross-platform this might be, but using signals and alarm might be a good way of looking at this. With a little work you could make this completely generic as well and usable in any situation.
http://docs.python.org/library/signal.html
So your code is going to look something like this.
import signal
def signal_handler(signum, frame):
raise Exception("Timed out!")
signal.signal(signal.SIGALRM, signal_handler)
signal.alarm(10) # Ten seconds
try:
long_function_call()
except Exception, msg:
print "Timed out!"
An improvement on @rik.the.vik's answer would be to use the with
statement to give the timeout function some syntactic sugar:
import signal
from contextlib import contextmanager
class TimeoutException(Exception): pass
@contextmanager
def time_limit(seconds):
def signal_handler(signum, frame):
raise TimeoutException("Timed out!")
signal.signal(signal.SIGALRM, signal_handler)
signal.alarm(seconds)
try:
yield
finally:
signal.alarm(0)
try:
with time_limit(10):
long_function_call()
except TimeoutException as e:
print("Timed out!")
try: yield \n finally: signal.alarm(0)
–
Pulitzer TimeoutError
–
Maurreen __init__()
, __enter__()
, and __exit__()
instead of @contextlib.contextmanager
, be sure that __exit__()
returns True
to suppress the error raised by the alarm. –
Abbevillian I'm not sure how cross-platform this might be, but using signals and alarm might be a good way of looking at this. With a little work you could make this completely generic as well and usable in any situation.
http://docs.python.org/library/signal.html
So your code is going to look something like this.
import signal
def signal_handler(signum, frame):
raise Exception("Timed out!")
signal.signal(signal.SIGALRM, signal_handler)
signal.alarm(10) # Ten seconds
try:
long_function_call()
except Exception, msg:
print "Timed out!"
Here's a Linux/OSX way to limit a function's running time. This is in case you don't want to use threads, and want your program to wait until the function ends, or the time limit expires.
from multiprocessing import Process
from time import sleep
def f(time):
sleep(time)
def run_with_limited_time(func, args, kwargs, time):
"""Runs a function with time limit
:param func: The function to run
:param args: The functions args, given as tuple
:param kwargs: The functions keywords, given as dict
:param time: The time limit in seconds
:return: True if the function ended successfully. False if it was terminated.
"""
p = Process(target=func, args=args, kwargs=kwargs)
p.start()
p.join(time)
if p.is_alive():
p.terminate()
return False
return True
if __name__ == '__main__':
print run_with_limited_time(f, (1.5, ), {}, 2.5) # True
print run_with_limited_time(f, (3.5, ), {}, 2.5) # False
I prefer a context manager approach because it allows the execution of multiple python statements within a with time_limit
statement. Because windows system does not have SIGALARM
, a more portable and perhaps more straightforward method could be using a Timer
from contextlib import contextmanager
import threading
import _thread
class TimeoutException(Exception):
def __init__(self, msg=''):
self.msg = msg
@contextmanager
def time_limit(seconds, msg=''):
timer = threading.Timer(seconds, lambda: _thread.interrupt_main())
timer.start()
try:
yield
except KeyboardInterrupt:
raise TimeoutException("Timed out for operation {}".format(msg))
finally:
# if the action ends in specified time, timer is canceled
timer.cancel()
import time
# ends after 5 seconds
with time_limit(5, 'sleep'):
for i in range(10):
time.sleep(1)
# this will actually end after 10 seconds
with time_limit(5, 'sleep'):
time.sleep(10)
The key technique here is the use of _thread.interrupt_main
to interrupt the main thread from the timer thread. One caveat is that the main thread does not always respond to the KeyboardInterrupt
raised by the Timer
quickly. For example, time.sleep()
calls a system function so a KeyboardInterrupt
will be handled after the sleep
call.
thread
module has been renamed to _thread
in Python 3, for compatibility with Python 2 you would need to do: import sys if sys.version_info[0] < 3: from thread import interrupt_main else: from _thread import interrupt_main
and then later: timer = threading.Timer(seconds, lambda: interrupt_main())
–
Outskirts Here: a simple way of getting the desired effect:
https://pypi.org/project/func-timeout
This saved my life.
And now an example on how it works: lets say you have a huge list of items to be processed and you are iterating your function over those items. However, for some strange reason, your function get stuck on item n, without raising an exception. You need to other items to be processed, the more the better. In this case, you can set a timeout for processing each item:
import time
import func_timeout
def my_function(n):
"""Sleep for n seconds and return n squared."""
print(f'Processing {n}')
time.sleep(n)
return n**2
def main_controller(max_wait_time, all_data):
"""
Feed my_function with a list of items to process (all_data).
However, if max_wait_time is exceeded, return the item and a fail info.
"""
res = []
for data in all_data:
try:
my_square = func_timeout.func_timeout(
max_wait_time, my_function, args=[data]
)
res.append((my_square, 'processed'))
except func_timeout.FunctionTimedOut:
print('error')
res.append((data, 'fail'))
continue
return res
timeout_time = 2.1 # my time limit
all_data = range(1, 10) # the data to be processed
res = main_controller(timeout_time, all_data)
print(res)
Doing this from within a signal handler is dangerous: you might be inside an exception handler at the time the exception is raised, and leave things in a broken state. For example,
def function_with_enforced_timeout():
f = open_temporary_file()
try:
...
finally:
here()
unlink(f.filename)
If your exception is raised here(), the temporary file will never be deleted.
The solution here is for asynchronous exceptions to be postponed until the code is not inside exception-handling code (an except or finally block), but Python doesn't do that.
Note that this won't interrupt anything while executing native code; it'll only interrupt it when the function returns, so this may not help this particular case. (SIGALRM itself might interrupt the call that's blocking--but socket code typically simply retries after an EINTR.)
Doing this with threads is a better idea, since it's more portable than signals. Since you're starting a worker thread and blocking until it finishes, there are none of the usual concurrency worries. Unfortunately, there's no way to deliver an exception asynchronously to another thread in Python (other thread APIs can do this). It'll also have the same issue with sending an exception during an exception handler, and require the same fix.
PyErr_CheckSignals()
before restarting on EINTR, to allow a Python signal handler to run. –
Pulitzer The only "safe" way to do this, in any language, is to use a secondary process to do that timeout-thing, otherwise you need to build your code in such a way that it will time out safely by itself, for instance by checking the time elapsed in a loop or similar. If changing the method isn't an option, a thread will not suffice.
Why? Because you're risking leaving things in a bad state when you do. If the thread is simply killed mid-method, locks being held, etc. will just be held, and cannot be released.
So look at the process way, do not look at the thread way.
You don't have to use threads. You can use another process to do the blocking work, for instance, maybe using the subprocess module. If you want to share data structures between different parts of your program then Twisted is a great library for giving yourself control of this, and I'd recommend it if you care about blocking and expect to have this trouble a lot. The bad news with Twisted is you have to rewrite your code to avoid any blocking, and there is a fair learning curve.
You can use threads to avoid blocking, but I'd regard this as a last resort, since it exposes you to a whole world of pain. Read a good book on concurrency before even thinking about using threads in production, e.g. Jean Bacon's "Concurrent Systems". I work with a bunch of people who do really cool high performance stuff with threads, and we don't introduce threads into projects unless we really need them.
I would usually prefer using a contextmanager as suggested by @josh-lee
But in case someone is interested in having this implemented as a decorator, here's an alternative.
Here's how it would look like:
import time
from timeout import timeout
class Test(object):
@timeout(2)
def test_a(self, foo, bar):
print foo
time.sleep(1)
print bar
return 'A Done'
@timeout(2)
def test_b(self, foo, bar):
print foo
time.sleep(3)
print bar
return 'B Done'
t = Test()
print t.test_a('python', 'rocks')
print t.test_b('timing', 'out')
And this is the timeout.py
module:
import threading
class TimeoutError(Exception):
pass
class InterruptableThread(threading.Thread):
def __init__(self, func, *args, **kwargs):
threading.Thread.__init__(self)
self._func = func
self._args = args
self._kwargs = kwargs
self._result = None
def run(self):
self._result = self._func(*self._args, **self._kwargs)
@property
def result(self):
return self._result
class timeout(object):
def __init__(self, sec):
self._sec = sec
def __call__(self, f):
def wrapped_f(*args, **kwargs):
it = InterruptableThread(f, *args, **kwargs)
it.start()
it.join(self._sec)
if not it.is_alive():
return it.result
raise TimeoutError('execution expired')
return wrapped_f
The output:
python
rocks
A Done
timing
Traceback (most recent call last):
...
timeout.TimeoutError: execution expired
out
Notice that even if the TimeoutError
is thrown, the decorated method will continue to run in a different thread. If you would also want this thread to be "stopped" see: Is there any way to kill a Thread in Python?
TimeoutError
is a build in exception today: docs.python.org/3/library/exceptions.html. –
Hefty Here's a timeout function I think I found via google and it works for me.
From: http://code.activestate.com/recipes/473878/
def timeout(func, args=(), kwargs={}, timeout_duration=1, default=None):
'''This function will spwan a thread and run the given function using the args, kwargs and
return the given default value if the timeout_duration is exceeded
'''
import threading
class InterruptableThread(threading.Thread):
def __init__(self):
threading.Thread.__init__(self)
self.result = default
def run(self):
try:
self.result = func(*args, **kwargs)
except:
self.result = default
it = InterruptableThread()
it.start()
it.join(timeout_duration)
if it.isAlive():
return it.result
else:
return it.result
The method from @user2283347 is tested working, but we want to get rid of the traceback messages. Use pass trick from Remove traceback in Python on Ctrl-C, the modified code is:
from contextlib import contextmanager
import threading
import _thread
class TimeoutException(Exception): pass
@contextmanager
def time_limit(seconds):
timer = threading.Timer(seconds, lambda: _thread.interrupt_main())
timer.start()
try:
yield
except KeyboardInterrupt:
pass
finally:
# if the action ends in specified time, timer is canceled
timer.cancel()
def timeout_svm_score(i):
#from sklearn import svm
#import numpy as np
#from IPython.core.display import display
#%store -r names X Y
clf = svm.SVC(kernel='linear', C=1).fit(np.nan_to_num(X[[names[i]]]), Y)
score = clf.score(np.nan_to_num(X[[names[i]]]),Y)
#scoressvm.append((score, names[i]))
display((score, names[i]))
%%time
with time_limit(5):
i=0
timeout_svm_score(i)
#Wall time: 14.2 s
%%time
with time_limit(20):
i=0
timeout_svm_score(i)
#(0.04541284403669725, '计划飞行时间')
#Wall time: 16.1 s
%%time
with time_limit(5):
i=14
timeout_svm_score(i)
#Wall time: 5h 43min 41s
We can see that this method may need far long time to interrupt the calculation, we asked for 5 seconds, but it work out in 5 hours.
Using simple decorator
Here's the version I made after studying above answers. Pretty straight forward.
def function_timeout(seconds: int):
"""Wrapper of Decorator to pass arguments"""
def decorator(func):
@contextmanager
def time_limit(seconds_):
def signal_handler(signum, frame): # noqa
raise TimeoutException(f"Timed out in {seconds_} seconds!")
signal.signal(signal.SIGALRM, signal_handler)
signal.alarm(seconds_)
try:
yield
finally:
signal.alarm(0)
@wraps(func)
def wrapper(*args, **kwargs):
with time_limit(seconds):
return func(*args, **kwargs)
return wrapper
return decorator
How to use?
@function_timeout(seconds=5)
def my_naughty_function():
while True:
print("Try to stop me ;-p")
Well of course, don't forget to import the function if it is in a separate file.
This code works for Windows Server Datacenter 2016 with python 3.7.3 and I didn't tested on Unix, after mixing some answers from Google and StackOverflow, it finally worked for me like this:
from multiprocessing import Process, Lock
import time
import os
def f(lock,id,sleepTime):
lock.acquire()
print("I'm P"+str(id)+" Process ID: "+str(os.getpid()))
lock.release()
time.sleep(sleepTime) #sleeps for some time
print("Process: "+str(id)+" took this much time:"+str(sleepTime))
time.sleep(sleepTime)
print("Process: "+str(id)+" took this much time:"+str(sleepTime*2))
if __name__ == '__main__':
timeout_function=float(9) # 9 seconds for max function time
print("Main Process ID: "+str(os.getpid()))
lock=Lock()
p1=Process(target=f, args=(lock,1,6,)) #Here you can change from 6 to 3 for instance, so you can watch the behavior
start=time.time()
print(type(start))
p1.start()
if p1.is_alive():
print("process running a")
else:
print("process not running a")
while p1.is_alive():
timeout=time.time()
if timeout-start > timeout_function:
p1.terminate()
print("process terminated")
print("watching, time passed: "+str(timeout-start) )
time.sleep(1)
if p1.is_alive():
print("process running b")
else:
print("process not running b")
p1.join()
if p1.is_alive():
print("process running c")
else:
print("process not running c")
end=time.time()
print("I am the main process, the two processes are done")
print("Time taken:- "+str(end-start)+" secs") #MainProcess terminates at approx ~ 5 secs.
time.sleep(5) # To see if on Task Manager the child process is really being terminated, and it is
print("finishing")
The main code is from this link: Create two child process using python(windows)
Then I used .terminate()
to kill the child process. You can see that the function f calls 2 prints, one after 5 seconds and another after 10 seconds. However, with a 7 seconds sleep and the terminate(), it does not show the last print.
It worked for me, hope it helps!
© 2022 - 2024 — McMap. All rights reserved.