Related:
Also: https://github.com/mklarqvist/positional-popcount has SSE blend, various AVX2, various AVX512 including Harley-Seal which is great for large arrays, and various other algorithms for positional popcount. Possibly only for uint16_t
, but most could be adapted for other word widths. I think the algorithm I propose below is what they call adder_forest
.
Your best bet is SIMD, using AVX1 on your Sandybridge CPU. Compilers aren't smart enough to auto-vectorize your loop-over-bits for you, even if you write it branchlessly to give them a better chance.
And unfortunately not smart enough to auto-vectorize the fast version that gradually widens and adds.
See is there an inverse instruction to the movemask instruction in intel avx2? for a summary of bitmap -> vector unpack methods for different sizes. Ext3h's suggestion in another answer is good: Unpack bits to something narrower than the final count array gives you more elements per instruction. Bytes is efficient with SIMD, and then you can do up to 255 vertical paddb
without overflow, before unpacking to accumulate into the 32-bit counter array.
It only takes 4x 16-byte __m128i
vectors to hold all 64 uint8_t
elements, so those accumulators can stay in registers, only adding to memory when widening out to 32-bit counters in an outer loop.
The unpack doesn't have to be in-order: you can always shuffle target[]
once at the very end, after accumulating all the results.
The inner loop could be unrolled to start with a 64 or 128-bit vector load, and unpack 4 or 8 different ways using pshufb
(_mm_shuffle_epi8
).
An even better strategy is to widen gradually
Starting with 2-bit accumulators, then mask/shift to widen those to 4-bit. So in the inner-most loop most of the operations are working with "dense" data, not "diluting" it too much right away. Higher information / entropy density means that each instruction does more useful work.
Using SWAR techniques for 32x 2-bit add inside scalar or SIMD registers is easy / cheap because we need to avoid the possibility of carry out the top of an element anyway. With proper SIMD, we'd lose those counts, with SWAR we'd corrupt the next element.
uint64_t x = *(input++); // load a new bitmask
const uint64_t even_1bits = 0x5555555555555555; // 0b...01010101;
uint64_t lo = x & even_1bits;
uint64_t hi = (x>>1) & even_1bits; // or use ANDN before shifting to avoid a MOV copy
accum2_lo += lo; // can do up to 3 iterations of this without overflow
accum2_hi += hi; // because a 2-bit integer overflows at 4
Then you repeat up to 4 vectors of 4-bit elements, then 8 vectors of 8-bit elements, then you should widen all the way to 32 and accumulate into the array in memory because you'll run out of registers anyway, and this outer outer loop work is infrequent enough that we don't need to bother with going to 16-bit. (Especially if we manually vectorize).
Biggest downside: this doesn't auto-vectorize, unlike @njuffa's version. But with gcc -O3 -march=sandybridge
for AVX1 (then running the code on Skylake), this running scalar 64-bit is actually still slightly faster than 128-bit AVX auto-vectorized asm from @njuffa's code.
But that's timing on Skylake, which has 4 scalar ALU ports (and mov-elimination), while Sandybridge lacks mov-elimination and only has 3 ALU ports, so the scalar code will probably hit back-end execution-port bottlenecks. (But SIMD code may be nearly as fast, because there's plenty of AND / ADD mixed with the shifts, and SnB does have SIMD execution units on all 3 of its ports that have any ALUs on them. Haswell just added port 6, for scalar-only including shifts and branches.)
With good manual vectorization, this should be a factor of almost 2 or 4 faster.
But if you have to choose between this scalar or @njuffa's with AVX2 autovectorization, @njuffa's is faster on Skylake with -march=native
If building on a 32-bit target is possible/required, this suffers a lot (without vectorization because of using uint64_t in 32-bit registers), while vectorized code barely suffers at all (because all the work happens in vector regs of the same width).
// TODO: put the target[] re-ordering somewhere
// TODO: cleanup for N not a multiple of 3*4*21 = 252
// TODO: manual vectorize with __m128i, __m256i, and/or __m512i
void sum_gradual_widen (const uint64_t *restrict input, unsigned int *restrict target, size_t length)
{
const uint64_t *endp = input + length - 3*4*21; // 252 masks per outer iteration
while(input <= endp) {
uint64_t accum8[8] = {0}; // 8-bit accumulators
for (int k=0 ; k<21 ; k++) {
uint64_t accum4[4] = {0}; // 4-bit accumulators can hold counts up to 15. We use 4*3=12
for(int j=0 ; j<4 ; j++){
uint64_t accum2_lo=0, accum2_hi=0;
for(int i=0 ; i<3 ; i++) { // the compiler should fully unroll this
uint64_t x = *input++; // load a new bitmask
const uint64_t even_1bits = 0x5555555555555555;
uint64_t lo = x & even_1bits; // 0b...01010101;
uint64_t hi = (x>>1) & even_1bits; // or use ANDN before shifting to avoid a MOV copy
accum2_lo += lo;
accum2_hi += hi; // can do up to 3 iterations of this without overflow
}
const uint64_t even_2bits = 0x3333333333333333;
accum4[0] += accum2_lo & even_2bits; // 0b...001100110011; // same constant 4 times, because we shift *first*
accum4[1] += (accum2_lo >> 2) & even_2bits;
accum4[2] += accum2_hi & even_2bits;
accum4[3] += (accum2_hi >> 2) & even_2bits;
}
for (int i = 0 ; i<4 ; i++) {
accum8[i*2 + 0] += accum4[i] & 0x0f0f0f0f0f0f0f0f;
accum8[i*2 + 1] += (accum4[i] >> 4) & 0x0f0f0f0f0f0f0f0f;
}
}
// char* can safely alias anything.
unsigned char *narrow = (uint8_t*) accum8;
for (int i=0 ; i<64 ; i++){
target[i] += narrow[i];
}
}
/* target[0] = bit 0
* target[1] = bit 8
* ...
* target[8] = bit 1
* target[9] = bit 9
* ...
*/
// TODO: 8x8 transpose
}
We don't care about order, so accum4[0]
has 4-bit accumulators for every 4th bit, for example. The final fixup needed (but not yet implemented) at the very end is an 8x8 transpose of the uint32_t target[64]
array, which can be done efficiently using unpck and vshufps
with only AVX1. (Transpose an 8x8 float using AVX/AVX2). And also a cleanup loop for the last up to 251 masks.
We can use any SIMD element width to implement these shifts; we have to mask anyway for widths lower than 16-bit (SSE/AVX doesn't have byte-granularity shifts, only 16-bit minimum.)
Benchmark results on Arch Linux i7-6700k from @njuffa's test harness, with this added. (Godbolt) N = (10000000 / (3*4*21) * 3*4*21) = 9999864
(i.e. 10000000 rounded down to a multiple of the 252 iteration "unroll" factor, so my simplistic implementation is doing the same amount of work, not counting re-ordering target[]
which it doesn't do, so it does print mismatch results.
But the printed counts match another position of the reference array.)
I ran the program 4x in a row (to make sure the CPU was warmed up to max turbo) and took one of the runs that looked good (none of the 3 times abnormally high).
ref: the best bit-loop (next section)
fast: @njuffa's code. (auto-vectorized with 128-bit AVX integer instructions).
gradual: my version (not auto-vectorized by gcc or clang, at least not in the inner loop.) gcc and clang fully unroll the inner 12 iterations.
gcc8.2 -O3 -march=sandybridge -fpie -no-pie
ref: 0.331373 secs, fast: 0.011387 secs, gradual: 0.009966 secs
gcc8.2 -O3 -march=sandybridge -fno-pie -no-pie
ref: 0.397175 secs, fast: 0.011255 secs, gradual: 0.010018 secs
clang7.0 -O3 -march=sandybridge -fpie -no-pie
ref: 0.352381 secs, fast: 0.011926 secs, gradual: 0.009269 secs (very low counts for port 7 uops, clang used indexed addressing for stores)
clang7.0 -O3 -march=sandybridge -fno-pie -no-pie
ref: 0.293014 secs, fast: 0.011777 secs, gradual: 0.009235 secs
-march=skylake (allowing AVX2 for 256-bit integer vectors) helps both, but @njuffa's most because more of it vectorizes (including its inner-most loop):
gcc8.2 -O3 -march=skylake -fpie -no-pie
ref: 0.328725 secs, fast: 0.007621 secs, gradual: 0.010054 secs (gcc shows no gain for "gradual", only "fast")
gcc8.2 -O3 -march=skylake -fno-pie -no-pie
ref: 0.333922 secs, fast: 0.007620 secs, gradual: 0.009866 secs
clang7.0 -O3 -march=skylake -fpie -no-pie
ref: 0.260616 secs, fast: 0.007521 secs, gradual: 0.008535 secs (IDK why gradual is faster than -march=sandybridge; it's not using BMI1 andn
. I guess because it's using 256-bit AVX2 for the k=0..20 outer loop with vpaddq
)
clang7.0 -O3 -march=skylake -fno-pie -no-pie
ref: 0.259159 secs, fast: 0.007496 secs, gradual: 0.008671 secs
Without AVX, just SSE4.2: (-march=nehalem
), bizarrely clang's gradual is faster than with AVX / tune=sandybridge. "fast" is only barely slower than with AVX.
gcc8.2 -O3 -march=skylake -fno-pie -no-pie
ref: 0.337178 secs, fast: 0.011983 secs, gradual: 0.010587 secs
clang7.0 -O3 -march=skylake -fno-pie -no-pie
ref: 0.293555 secs, fast: 0.012549 secs, gradual: 0.008697 secs
-fprofile-generate
/ -fprofile-use
help some for GCC, especially for the "ref" version where it doesn't unroll at all by default.
I highlighted the best, but often they're within measurement noise margin of each other. It's unsurprising the -fno-pie -no-pie
was sometimes faster: indexing static arrays with [disp32 + reg]
is not an indexed addressing mode, just base + disp32, so it doesn't ever unlaminate on Sandybridge-family CPUs.
But with gcc sometimes -fpie
was faster; I didn't check but I assume gcc just shot itself in the foot somehow when 32-bit absolute addressing was possible. Or just innocent-looking differences in code-gen happened to cause alignment or uop-cache problems; I didn't check in detail.
For SIMD, we can simply do 2 or 4x uint64_t
in parallel, only accumulating horizontally in the final step where we widen bytes to 32-bit elements. (Perhaps by shuffling in-lane and then using pmaddubsw
with a multiplier of _mm256_set1_epi8(1)
to add horizontal byte pairs into 16-bit elements.)
TODO: manually-vectorized __m128i
and __m256i
(and __m512i
) versions of this. Should be close to 2x, 4x, or even 8x faster than the "gradual" times above. Probably HW prefetch can still keep up with it, except maybe an AVX512 version with data coming from DRAM, especially if there's contention from other threads. We do a significant amount of work per qword we read.
Obsolete code: improvements to the bit-loop
Your portable scalar version can be improved, too, speeding it up from ~1.92 seconds (with a 34% branch mispredict rate overall, with the fast loops commented out!) to ~0.35sec (clang7.0 -O3 -march=sandybridge
) with a properly random input on 3.9GHz Skylake. Or 1.83 sec for the branchy version with != 0
instead of == m
, because compilers fail to prove that m
always has exactly 1 bit set and/or optimize accordingly.
(vs. 0.01 sec for @njuffa's or my fast version above, so this is pretty useless in an absolute sense, but it's worth mentioning as a general optimization example of when to use branchless code.)
If you expect a random mix of zeros and ones, you want something branchless that won't mispredict. Doing += 0
for elements that were zero avoids that, and also means that the C abstract machine definitely touches that memory regardless of the data.
Compilers aren't allowed to invent writes, so if they wanted to auto-vectorize your if() target[i]++
version, they'd have to use a masked store like x86 vmaskmovps
to avoid a non-atomic read / rewrite of unmodified elements of target
. So some hypothetical future compiler that can auto-vectorize the plain scalar code would have an easier time with this.
Anyway, one way to write this is target[i] += (pLong[j] & m != 0);
, using bool->int conversion to get a 0 / 1 integer.
But we get better asm for x86 (and probably for most other architectures) if we just shift the data and isolate the low bit with &1
. Compilers are kinda dumb and don't seem to spot this optimization. They do nicely optimize away the extra loop counter, and turn m <<= 1
into add same,same
to efficiently left shift, but they still use xor-zero / test
/ setne
to create a 0 / 1 integer.
An inner loop like this compiles slightly more efficiently (but still much much worse than we can do with SSE2 or AVX, or even scalar using @chrqlie's lookup table which will stay hot in L1d when used repeatedly like this, allowing SWAR in uint64_t
):
for (int j = 0; j < 10000000; j++) {
#if 1 // extract low bit directly
unsigned long long tmp = pLong[j];
for (int i=0 ; i<64 ; i++) { // while(tmp) could mispredict, but good for sparse data
target[i] += tmp&1;
tmp >>= 1;
}
#else // bool -> int shifting a mask
unsigned long m = 1;
for (i = 0; i < 64; i++) {
target[i]+= (pLong[j] & m) != 0;
m = (m << 1);
}
#endif
Note that unsigned long
is not guaranteed to be a 64-bit type, and isn't in x86-64 System V x32 (ILP32 in 64-bit mode), and Windows x64. Or in 32-bit ABIs like i386 System V.
Compiled on the Godbolt compiler explorer by gcc, clang, and ICC, it's 1 fewer uops in the loop with gcc. But all of them are just plain scalar, with clang and ICC unrolling by 2.
# clang7.0 -O3 -march=sandybridge
.LBB1_2: # =>This Loop Header: Depth=1
# outer loop loads a uint64 from the src
mov rdx, qword ptr [r14 + 8*rbx]
mov rsi, -256
.LBB1_3: # Parent Loop BB1_2 Depth=1
# do {
mov edi, edx
and edi, 1 # isolate the low bit
add dword ptr [rsi + target+256], edi # and += into target
mov edi, edx
shr edi
and edi, 1 # isolate the 2nd bit
add dword ptr [rsi + target+260], edi
shr rdx, 2 # tmp >>= 2;
add rsi, 8
jne .LBB1_3 # } while(offset += 8 != 0);
This is slightly better than we get from test
/ setnz
. Without unrolling, bt
/ setc
might have been equal, but compilers are bad at using bt
to implement bool (x & (1ULL << n))
, or bts
to implement x |= 1ULL << n
.
If many words have their highest set bit far below bit 63, looping on while(tmp)
could be a win. Branch mispredicts make it not worth it if it only saves ~0 to 4 iterations most of the time, but if it often saves 32 iterations, that could really be worth it. Maybe unroll in the source so the loop only tests tmp
every 2 iterations (because compilers won't do that transformation for you), but then the loop branch can be shr rdx, 2
/ jnz
.
On Sandybridge-family, this is 11 fused-domain uops for the front end per 2 bits of input. (add [mem], reg
with a non-indexed addressing mode micro-fuses the load+ALU, and the store-address+store-data, everything else is single-uop. add/jcc macro-fuses. See Agner Fog's guide, and https://stackoverflow.com/tags/x86/info). So it should run at something like 3 cycles per 2 bits = one uint64_t per 96 cycles. (Sandybridge doesn't "unroll" internally in its loop buffer, so non-multiple-of-4 uop counts basically round up, unlike on Haswell and later).
vs. gcc's not-unrolled version being 7 uops per 1 bit = 2 cycles per bit. If you compiled with gcc -O3 -march=native -fprofile-generate
/ test-run / gcc -O3 -march=native -fprofile-use
, profile-guided optimization would enable loop unrolling.
This is probably slower than a branchy version on perfectly predictable data like you get from memset
with any repeating byte pattern. I'd suggest filling your array with randomly-generated data from a fast PRNG like an SSE2 xorshift+, or if you're just timing the count loop then use anything you want, like rand()
.
uint16
as counters would likely result in overflow – Zeistm = (m <<1)
to the end. The time is now 1.64 seconds. Will check out your link. – Bambytarget[i] += (pLong[j] & (1ULL << i) != 0)
might compile to abts
/setc
/add
if you're lucky. – Melsonpopcnt
is a horizontal popcnt that adds up all the bits in one integer. The OP wants separate counts for every bit-position over multiple integers. You want to unpack bit to something wider (e.g. nibbles or bytes), then vertical add (likepaddb
) as many times as you can without overflow, then expand to wider counters. – Melsontarget[]
if the input is all zeros, it can't introduce a non-atomic+= condition;
With AVX, it could still read it and do a masked store likevmaskmovps
that wouldn't rewrite values that weren't touched, but in practice it doesn't. godbolt.org/z/b5Yfug Even ICC doesn't do anything better thanjcc
over aninc [mem]
. – Melson