I wrote the package pipes that can do several things that might help :
- use
%P>%
to print
the output.
- use
%ae>%
to use all.equal
on input and output.
- use
%V>%
to use View
on the output, it will open a viewer for each relevant step.
If you want to see some aggregated info you can try %summary>%
, %glimpse>%
or %skim>%
which will use summary
, tibble::glimpse
or skimr::skim
, or you can define your own pipe to show specific changes, using new_pipe
# devtools::install_github("moodymudskipper/pipes")
library(dplyr)
library(pipes)
res <- mtcars %P>%
group_by(cyl) %P>%
sample_frac(0.1) %P>%
summarise(res = mean(mpg))
#> group_by(., cyl)
#> # A tibble: 32 x 11
#> # Groups: cyl [3]
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> * <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> 4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
#> 5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
#> 6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
#> 7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
#> 8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
#> 9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
#> 10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4
#> # ... with 22 more rows
#> sample_frac(., 0.1)
#> # A tibble: 3 x 11
#> # Groups: cyl [3]
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 26 4 120. 91 4.43 2.14 16.7 0 1 5 2
#> 2 17.8 6 168. 123 3.92 3.44 18.9 1 0 4 4
#> 3 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
#> summarise(., res = mean(mpg))
#> # A tibble: 3 x 2
#> cyl res
#> <dbl> <dbl>
#> 1 4 26
#> 2 6 17.8
#> 3 8 18.7
res <- mtcars %ae>%
group_by(cyl) %ae>%
sample_frac(0.1) %ae>%
summarise(res = mean(mpg))
#> group_by(., cyl)
#> [1] "Attributes: < Names: 1 string mismatch >"
#> [2] "Attributes: < Length mismatch: comparison on first 2 components >"
#> [3] "Attributes: < Component \"class\": Lengths (1, 4) differ (string compare on first 1) >"
#> [4] "Attributes: < Component \"class\": 1 string mismatch >"
#> [5] "Attributes: < Component 2: Modes: character, list >"
#> [6] "Attributes: < Component 2: Lengths: 32, 2 >"
#> [7] "Attributes: < Component 2: names for current but not for target >"
#> [8] "Attributes: < Component 2: Attributes: < target is NULL, current is list > >"
#> [9] "Attributes: < Component 2: target is character, current is tbl_df >"
#> sample_frac(., 0.1)
#> [1] "Different number of rows"
#> summarise(., res = mean(mpg))
#> [1] "Cols in y but not x: `res`. "
#> [2] "Cols in x but not y: `qsec`, `wt`, `drat`, `hp`, `disp`, `mpg`, `carb`, `gear`, `am`, `vs`. "
res <- mtcars %V>%
group_by(cyl) %V>%
sample_frac(0.1) %V>%
summarise(res = mean(mpg))
# you'll have to test this one by yourself
debug()
function. It is close to what you want. You could use it with theprint()
statements. This post on Cross Validated talks more about it. – Galengalena%>% print() %>%
- see this answer: https://mcmap.net/q/741552/-printing-intermediate-results-without-breaking-pipeline-in-tidyverse – Skees