I'd like to suggest an approach that I find to be quite intuitive and easy to read. (Note: It is slower than the currently accepted solution.)
It is built on the idea that for each integer in the list, we need to extend the so-far-aggregated resulting combination list with
- all currently existing combinations, each extended with the given integer
- a single "combination" of that integer alone
Here, I am using .Aggregate()
with a seed that is an IEnumerable<IEnumerable<int>>
containing a single, empty collection entry. That empty entry lets us easily do the two steps above simultaneously. The empty collection entry can be skipped after the resulting combination collection has been aggregated.
It goes like this:
var emptyCollection = Enumerable.Empty<IEnumerable<int>>();
var emptyCombination = Enumerable.Empty<int>();
IEnumerable<int[]> combinations = list
.Aggregate(emptyCollection.Append(emptyCombination),
( acc, next ) => acc.Concat(acc.Select(entry => entry.Append(next))))
.Skip(1) // skip the initial, empty combination
.Select(comb => comb.ToArray());
For each entry in the input integer list { 1, 2, 3 }
, the accumulation progresses as follows:
next = 1
{ { } }.Concat({ { }.Append(1) })
{ { } }.Concat({ { 1 } })
{ { }, { 1 } } // acc
next = 2
{ { }, { 1 } }.Concat({ { }.Append(2), { 1 }.Append(2) })
{ { }, { 1 } }.Concat({ { 2 }, { 1, 2 } })
{ { }, { 1 }, { 2 }, { 1, 2 } } // acc
next = 3
{ { }, { 1 }, { 2 }, { 1, 2 } }.Concat({ { }.Append(3), { 1 }.Append(3), { 2 }.Append(3), { 1, 2 }.Append(3) })
{ { }, { 1 }, { 2 }, { 1, 2 } }.Concat({ { 3 }, { 1, 3 }, { 2, 3 }, { 1, 2, 3 } })
{ { }, { 1 }, { 2 }, { 1, 2 }, { 3 }, { 1, 3 }, { 2, 3 }, { 1, 2, 3 } } // acc
Skipping the first (empty) entry, we are left with the following collection:
1
2
1 2
3
1 3
2 3
1 2 3
, which can easily be ordered by collection length and collection entry sum for a clearer overview.
Example fiddle here.