I'm aware that there are a LOT of answers to this already, but I thought I'd add my own individual contribution in JavaScript, which consists of two functions - one to generate all the possible distinct k-subsets of an original n-element set, and one to use that first function to generate the power set of the original n-element set.
Here is the code for the two functions:
//Generate combination subsets from a base set of elements (passed as an array). This function should generate an
//array containing nCr elements, where nCr = n!/[r! (n-r)!].
//Arguments:
//[1] baseSet : The base set to create the subsets from (e.g., ["a", "b", "c", "d", "e", "f"])
//[2] cnt : The number of elements each subset is to contain (e.g., 3)
function MakeCombinationSubsets(baseSet, cnt)
{
var bLen = baseSet.length;
var indices = [];
var subSet = [];
var done = false;
var result = []; //Contains all the combination subsets generated
var done = false;
var i = 0;
var idx = 0;
var tmpIdx = 0;
var incr = 0;
var test = 0;
var newIndex = 0;
var inBounds = false;
var tmpIndices = [];
var checkBounds = false;
//First, generate an array whose elements are indices into the base set ...
for (i=0; i<cnt; i++)
indices.push(i);
//Now create a clone of this array, to be used in the loop itself ...
tmpIndices = [];
tmpIndices = tmpIndices.concat(indices);
//Now initialise the loop ...
idx = cnt - 1; //point to the last element of the indices array
incr = 0;
done = false;
while (!done)
{
//Create the current subset ...
subSet = []; //Make sure we begin with a completely empty subset before continuing ...
for (i=0; i<cnt; i++)
subSet.push(baseSet[tmpIndices[i]]); //Create the current subset, using items selected from the
//base set, using the indices array (which will change as we
//continue scanning) ...
//Add the subset thus created to the result set ...
result.push(subSet);
//Now update the indices used to select the elements of the subset. At the start, idx will point to the
//rightmost index in the indices array, but the moment that index moves out of bounds with respect to the
//base set, attention will be shifted to the next left index.
test = tmpIndices[idx] + 1;
if (test >= bLen)
{
//Here, we're about to move out of bounds with respect to the base set. We therefore need to scan back,
//and update indices to the left of the current one. Find the leftmost index in the indices array that
//isn't going to move out of bounds with respect to the base set ...
tmpIdx = idx - 1;
incr = 1;
inBounds = false; //Assume at start that the index we're checking in the loop below is out of bounds
checkBounds = true;
while (checkBounds)
{
if (tmpIdx < 0)
{
checkBounds = false; //Exit immediately at this point
}
else
{
newIndex = tmpIndices[tmpIdx] + 1;
test = newIndex + incr;
if (test >= bLen)
{
//Here, incrementing the current selected index will take that index out of bounds, so
//we move on to the next index to the left ...
tmpIdx--;
incr++;
}
else
{
//Here, the index will remain in bounds if we increment it, so we
//exit the loop and signal that we're in bounds ...
inBounds = true;
checkBounds = false;
//End if/else
}
//End if
}
//End while
}
//At this point, if we'er still in bounds, then we continue generating subsets, but if not, we abort immediately.
if (!inBounds)
done = true;
else
{
//Here, we're still in bounds. We need to update the indices accordingly. NOTE: at this point, although a
//left positioned index in the indices array may still be in bounds, incrementing it to generate indices to
//the right may take those indices out of bounds. We therefore need to check this as we perform the index
//updating of the indices array.
tmpIndices[tmpIdx] = newIndex;
inBounds = true;
checking = true;
i = tmpIdx + 1;
while (checking)
{
test = tmpIndices[i - 1] + 1; //Find out if incrementing the left adjacent index takes it out of bounds
if (test >= bLen)
{
inBounds = false; //If we move out of bounds, exit NOW ...
checking = false;
}
else
{
tmpIndices[i] = test; //Otherwise, update the indices array ...
i++; //Now move on to the next index to the right in the indices array ...
checking = (i < cnt); //And continue until we've exhausted all the indices array elements ...
//End if/else
}
//End while
}
//At this point, if the above updating of the indices array has moved any of its elements out of bounds,
//we abort subset construction from this point ...
if (!inBounds)
done = true;
//End if/else
}
}
else
{
//Here, the rightmost index under consideration isn't moving out of bounds with respect to the base set when
//we increment it, so we simply increment and continue the loop ...
tmpIndices[idx] = test;
//End if
}
//End while
}
return(result);
//End function
}
function MakePowerSet(baseSet)
{
var bLen = baseSet.length;
var result = [];
var i = 0;
var partialSet = [];
result.push([]); //add the empty set to the power set
for (i=1; i<bLen; i++)
{
partialSet = MakeCombinationSubsets(baseSet, i);
result = result.concat(partialSet);
//End i loop
}
//Now, finally, add the base set itself to the power set to make it complete ...
partialSet = [];
partialSet.push(baseSet);
result = result.concat(partialSet);
return(result);
//End function
}
I tested this with the set ["a", "b", "c", "d", "e", "f"] as the base set, and ran the code to produce the following power set:
[]
["a"]
["b"]
["c"]
["d"]
["e"]
["f"]
["a","b"]
["a","c"]
["a","d"]
["a","e"]
["a","f"]
["b","c"]
["b","d"]
["b","e"]
["b","f"]
["c","d"]
["c","e"]
["c","f"]
["d","e"]
["d","f"]
["e","f"]
["a","b","c"]
["a","b","d"]
["a","b","e"]
["a","b","f"]
["a","c","d"]
["a","c","e"]
["a","c","f"]
["a","d","e"]
["a","d","f"]
["a","e","f"]
["b","c","d"]
["b","c","e"]
["b","c","f"]
["b","d","e"]
["b","d","f"]
["b","e","f"]
["c","d","e"]
["c","d","f"]
["c","e","f"]
["d","e","f"]
["a","b","c","d"]
["a","b","c","e"]
["a","b","c","f"]
["a","b","d","e"]
["a","b","d","f"]
["a","b","e","f"]
["a","c","d","e"]
["a","c","d","f"]
["a","c","e","f"]
["a","d","e","f"]
["b","c","d","e"]
["b","c","d","f"]
["b","c","e","f"]
["b","d","e","f"]
["c","d","e","f"]
["a","b","c","d","e"]
["a","b","c","d","f"]
["a","b","c","e","f"]
["a","b","d","e","f"]
["a","c","d","e","f"]
["b","c","d","e","f"]
["a","b","c","d","e","f"]
Just copy and paste those two functions "as is", and you'll have the basics needed to extract the distinct k-subsets of an n-element set, and generate the power set of that n-element set if you wish.
I don't claim this to be elegant, merely that it works after a lot of testing (and turning the air blue during the debugging phase :) ).