This is a direct follow up to How to interpret ggplot2::stat_density2d.
bins
has been re-added as an argument see this thread and the corresponding github issue, but it remains a mistery to me how to interpret those bins.
This answer (answer 1) suggests a way to calculate contour lines based on probabilities, and this answer argues that the current use of kde2d
in stat_density_2d would not mean that the bins can be interpreted as percentiles.
So the question.
When trying both approaches in order to get estimate quintile probabilities of the data, I get four lines as expected using the approach from answer 1, but only three lines with bins = 5
in stat_density_2d
. (which, as I believe, would give 4 bins!)
The fifth bin could be this tiny little dot in the centre which appears (maybe the centroid??)???
Is one of the ways utterly wrong? Or both? Or just two ways of estimating probabilities with their very own imprecision?
library(ggplot2)
#modifying function from answer1
prob_contour <- function(data, n = 50, prob = 0.95, ...) {
post1 <- MASS::kde2d(data[[1]], data[[2]], n = n, ...)
dx <- diff(post1$x[1:2])
dy <- diff(post1$y[1:2])
sz <- sort(post1$z)
c1 <- cumsum(sz) * dx * dy
levels <- sapply(prob, function(x) {
approx(c1, sz, xout = 1 - x)$y
})
df <- as.data.frame(grDevices::contourLines(post1$x, post1$y, post1$z, levels = levels))
df$x <- round(df$x, 3)
df$y <- round(df$y, 3)
df$level <- round(df$level, 2)
df$prob <- as.character(prob)
df
}
set.seed(1)
n=100
foo <- data.frame(x=rnorm(n, 0, 1), y=rnorm(n, 0, 1))
df_contours <- dplyr::bind_rows(
purrr::map(seq(0.2, 0.8, 0.2), function(p) prob_contour(foo, prob = p))
)
ggplot() +
stat_density_2d(data = foo, aes(x, y), bins = 5, color = "black") +
geom_point(data = foo, aes(x = x, y = y)) +
geom_polygon(data = df_contours, aes(x = x, y = y, color = prob), fill = NA) +
scale_color_brewer(name = "Probs", palette = "Set1")
Created on 2020-05-15 by the reprex package (v0.3.0)
devtools::session_info()
#> ─ Session info ───────────────────────────────────────────────────────────────
#> setting value
#> version R version 4.0.0 (2020-04-24)
#> os macOS Catalina 10.15.4
#> system x86_64, darwin17.0
#> ui X11
#> language (EN)
#> collate en_GB.UTF-8
#> ctype en_GB.UTF-8
#> tz Europe/London
#> date 2020-05-15
#>
#> ─ Packages ───────────────────────────────────────────────────────────────────
#> package * version date lib source
#> assertthat 0.2.1 2019-03-21 [1] CRAN (R 4.0.0)
#> backports 1.1.7 2020-05-13 [1] CRAN (R 4.0.0)
#> callr 3.4.3 2020-03-28 [1] CRAN (R 4.0.0)
#> cli 2.0.2 2020-02-28 [1] CRAN (R 4.0.0)
#> colorspace 1.4-1 2019-03-18 [1] CRAN (R 4.0.0)
#> crayon 1.3.4 2017-09-16 [1] CRAN (R 4.0.0)
#> curl 4.3 2019-12-02 [1] CRAN (R 4.0.0)
#> desc 1.2.0 2018-05-01 [1] CRAN (R 4.0.0)
#> devtools 2.3.0 2020-04-10 [1] CRAN (R 4.0.0)
#> digest 0.6.25 2020-02-23 [1] CRAN (R 4.0.0)
#> dplyr 0.8.5 2020-03-07 [1] CRAN (R 4.0.0)
#> ellipsis 0.3.0 2019-09-20 [1] CRAN (R 4.0.0)
#> evaluate 0.14 2019-05-28 [1] CRAN (R 4.0.0)
#> fansi 0.4.1 2020-01-08 [1] CRAN (R 4.0.0)
#> farver 2.0.3 2020-01-16 [1] CRAN (R 4.0.0)
#> fs 1.4.1 2020-04-04 [1] CRAN (R 4.0.0)
#> ggplot2 * 3.3.0 2020-03-05 [1] CRAN (R 4.0.0)
#> glue 1.4.1 2020-05-13 [1] CRAN (R 4.0.0)
#> gtable 0.3.0 2019-03-25 [1] CRAN (R 4.0.0)
#> highr 0.8 2019-03-20 [1] CRAN (R 4.0.0)
#> htmltools 0.4.0 2019-10-04 [1] CRAN (R 4.0.0)
#> httr 1.4.1 2019-08-05 [1] CRAN (R 4.0.0)
#> isoband 0.2.1 2020-04-12 [1] CRAN (R 4.0.0)
#> knitr 1.28 2020-02-06 [1] CRAN (R 4.0.0)
#> labeling 0.3 2014-08-23 [1] CRAN (R 4.0.0)
#> lifecycle 0.2.0 2020-03-06 [1] CRAN (R 4.0.0)
#> magrittr 1.5 2014-11-22 [1] CRAN (R 4.0.0)
#> MASS 7.3-51.5 2019-12-20 [1] CRAN (R 4.0.0)
#> memoise 1.1.0 2017-04-21 [1] CRAN (R 4.0.0)
#> mime 0.9 2020-02-04 [1] CRAN (R 4.0.0)
#> munsell 0.5.0 2018-06-12 [1] CRAN (R 4.0.0)
#> pillar 1.4.4 2020-05-05 [1] CRAN (R 4.0.0)
#> pkgbuild 1.0.8 2020-05-07 [1] CRAN (R 4.0.0)
#> pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.0.0)
#> pkgload 1.0.2 2018-10-29 [1] CRAN (R 4.0.0)
#> prettyunits 1.1.1 2020-01-24 [1] CRAN (R 4.0.0)
#> processx 3.4.2 2020-02-09 [1] CRAN (R 4.0.0)
#> ps 1.3.3 2020-05-08 [1] CRAN (R 4.0.0)
#> purrr 0.3.4 2020-04-17 [1] CRAN (R 4.0.0)
#> R6 2.4.1 2019-11-12 [1] CRAN (R 4.0.0)
#> RColorBrewer 1.1-2 2014-12-07 [1] CRAN (R 4.0.0)
#> Rcpp 1.0.4.6 2020-04-09 [1] CRAN (R 4.0.0)
#> remotes 2.1.1 2020-02-15 [1] CRAN (R 4.0.0)
#> rlang 0.4.6 2020-05-02 [1] CRAN (R 4.0.0)
#> rmarkdown 2.1 2020-01-20 [1] CRAN (R 4.0.0)
#> rprojroot 1.3-2 2018-01-03 [1] CRAN (R 4.0.0)
#> scales 1.1.1 2020-05-11 [1] CRAN (R 4.0.0)
#> sessioninfo 1.1.1 2018-11-05 [1] CRAN (R 4.0.0)
#> stringi 1.4.6 2020-02-17 [1] CRAN (R 4.0.0)
#> stringr 1.4.0 2019-02-10 [1] CRAN (R 4.0.0)
#> testthat 2.3.2 2020-03-02 [1] CRAN (R 4.0.0)
#> tibble 3.0.1 2020-04-20 [1] CRAN (R 4.0.0)
#> tidyselect 1.1.0 2020-05-11 [1] CRAN (R 4.0.0)
#> usethis 1.6.1 2020-04-29 [1] CRAN (R 4.0.0)
#> vctrs 0.3.0 2020-05-11 [1] CRAN (R 4.0.0)
#> withr 2.2.0 2020-04-20 [1] CRAN (R 4.0.0)
#> xfun 0.13 2020-04-13 [1] CRAN (R 4.0.0)
#> xml2 1.3.2 2020-04-23 [1] CRAN (R 4.0.0)
#> yaml 2.2.1 2020-02-01 [1] CRAN (R 4.0.0)
#>
#> [1] /Library/Frameworks/R.framework/Versions/4.0/Resources/library
(Despite all the mystery, it is somewhat reassuring that the contours look vaguely similar)
bins = 5
tobins = 4
it reproduces your result exactly. Maybe worth adding session data? – Fitmentstat_density_2d
(withggplot2:::contour_breaks
). But I guess still related. It's weird that Allan does have a different result - maybe worth to know for the developers that there is / has been a working version – BrambleStatContour$compute_group
usingif (!is.null(bins)) binwidth <- diff(range(data$z))/bins
, wheredata$z
is the vectorized output ofkde2d
– Fitmentif (!is.null(bins)) { binwidth <- diff(z_range)/(bins - 1) }
. that may be it – Bramblebins - 1
instead ofbins
. Presumablyz_range
is the same asrange(data$z)
– Fitment