The pixel-painting approach (as suggested by @Loadmaster) is superior to the mathematical solution in a variety of ways:
- Implementation is much simpler. The above problem can be solved in less than 100 lines of code, as this JSFiddle solution demonstrates (mostly because it’s conceptually much simpler, and has no edge cases or exceptions to deal with).
- It adapts easily to more general problems. It works with any shape, regardless of morphology, as long as it’s renderable with 2D drawing libraries (i.e., “all of them!”) — circles, ellipses, splines, polygons, you name it. Heck, even bitmap images.
- The complexity of the pixel-painting solution is ~O[n], as compared to ~O[n*n] for the mathematical solution. This means it will perform better as the number of shapes increases.
- And speaking of performance, you’ll often get hardware acceleration for free, as most modern 2D libraries (like HTML5’s canvas, I believe) will offload rendering work to graphics accelerators.
The one downside to pixel-painting is the finite accuracy of the solution. But that is tunable by simply rendering to larger or smaller canvases as the situation demands. Note, too, that anti-aliasing in the 2D rendering code (often turned on by default) will yield better-than-pixel-level accuracy. So, for example, rendering a 100x100 figure into a canvas of the same dimensions should, I think, yield accuracy on the order of 1 / (100 x 100 x 255) = .000039% ... which is probably “good enough” for all but the most demanding problems.
<p>Area computation of arbitrary figures as done thru pixel-painting, in which a complex shape is drawn into an HTML5 canvas and the area determined by comparing the number of white pixels found in the resulting bitmap. See javascript source for details.</p>
<canvas id="canvas" width="80" height="100"></canvas>
<p>Area = <span id="result"></span></p>
// Get HTML canvas element (and context) to draw into
var canvas = document.getElementById('canvas');
var ctx = canvas.getContext('2d');
// Lil' circle drawing utility
function circle(x,y,r) {
ctx.beginPath();
ctx.arc(x, y, r, 0, Math.PI*2);
ctx.fill();
}
// Clear canvas (to black)
ctx.fillStyle = 'black';
ctx.fillRect(0, 0, canvas.width, canvas.height);
// Fill shape (in white)
ctx.fillStyle = 'white';
circle(40, 50, 40);
circle(40, 10, 10);
circle(25, 15, 12);
circle(35, 90, 10);
// Get bitmap data
var id = ctx.getImageData(0, 0, canvas.width, canvas.height);
var pixels = id.data; // Flat array of RGBA bytes
// Determine area by counting the white pixels
for (var i = 0, area = 0; i < pixels.length; i += 4) {
area += pixels[i]; // Red channel (same as green and blue channels)
}
// Normalize by the max white value of 255
area /= 255;
// Output result
document.getElementById('result').innerHTML = area.toFixed(2);