(Maybe not a complete answer, but I had some of this written when @BeeOnRope posted an answer. Posting this anyway for some more links and technical details in case anyone's curious.)
Everything is always speculative until it reaches retirement and becomes non-speculative, definitely happened, part of the architectural state.
e.g. any load might fault with a bad address, any div
might trap on divide by zero. See also Out-of-order execution vs. speculative execution That and What exactly happens when a skylake CPU mispredicts a branch? mention that branch mispredicts are handled specially, because they're expected to be frequent. Fast-recovery can start before a mis-predicted branch reaches retirement, unlike the behaviour for a faulting load for example. (That's part of why Meltdown is exploitable.)
So even "regular" instructions are executed speculatively before being commited, and the only distinction between them is a human-made distinction, not computer-made? I presume, then, that the CPU stores multiple, possible rollback points? For instance if I have load instructions that may lead to page faults or simply use stale values, inside a conditional branch, the CPU identifies such instructions and scenarios and saves a state for each of them? I feel like I misunderstood because this may lead to a lot of storing register states and complicated dependencies.
The retirement state is always consistent so you can always roll back to there and discard all in-flight work, e.g. if an external interrupt arrives you want to handle it without waiting for a chain of a dozen cache miss loads to all execute. When an interrupt occurs, what happens to instructions in the pipeline?
This tracking basically happens for free or is something you need to do anyway to be able to detect which instruction faulted, not just that there was a problem somewhere. (This is called "precise exceptions")
The real distinction humans can usefully make is speculation that has a real chance of being wrong during execution of non-error cases. If your code gets a bad pointer, it doesn't really matter how it performs; it's going to page-fault and that's going to be very slow compared to local OoO exec details.
You're talking about a modern out-of-order (OoO) execution (not just fetch) CPU, like modern Intel or AMD x86, high-end ARM, MIPS r10000, etc.
The front-end is in-order (with speculation down predicted paths), and so is commit (aka retirement) from the out-of-order back-end into non-speculative retirement state. (aka known-good architectural state).
The CPU uses two major structures to track instructions (or on x86, uops = parts of instructions) in the back-end. The last stage of the front-end (after fetch / decode) allocates/renames instructions and adds them into both of these structures at once.
- RS = Reservation Station = scheduler: not-yet-executed instructions, waiting for an execution unit. The RS tracks dependencies and sends the oldest-ready uops to execution units that are ready.
ROB = ReOrder Buffer: not-yet-retired instructions. Instructions enter and leave in-order so it can just be a circular buffer.
Includes a flag to mark each entry as executed or not, set once the RS has sent it to an execution unit which reports success. The oldest instructions in the ROB that all have their done-executing bit set can "retire".
Also includes a flag which indicates "fault if this reaches retirement". This avoids spending time handling page faults from load instruction on the wrong path of execution (that might well have pointers into an unmapped page), for example. Either in the shadow of a branch mispredict, or just after another instruction (in program order) that should have faulted first but OoO exec got to it later.
(I'm also leaving out register-renaming onto a large physical register file.
That's the "rename" part. Allocate includes choosing which execution port an instruction will use, and reserving a load or store buffer entry for memory instructions.)
(There's also a store-buffer; stores don't write directly to L1d cache, they write to the store buffer. This makes it possible to speculatively execute stores and still roll back without them becoming visible to other cores. It also decouples cache-miss stores from execution. Once a store instruction retires, the store-buffer entry "graduates" and is eligible to commit to L1d cache, once MESI gets exclusive access to the cache line, and once memory-ordering rules are satisfied.)
Execution units detect whether an instruction should fault, or was mis-speculated and should roll back, but don't necessarily act on that until the instruction reaches retirement.
In-order retirement is the step that recovers program-order after OoO exec, including the case of exceptions of mis-speculation.
Terminology: Intel calls it "issue" when instructions are sent from the front-end into the ROB + RS. Other computer architecture people often call that "dispatch".
Sending uops from the RS to execution units is called "dispatch" by Intel, "issue" by other people.