I render isosurfaces with marching cubes, (or perhaps marching squares as this is 2D) and I want to do set operations like set difference, intersection and union. I thought this was easy to implement, by simply choosing between two vertex scalars from two different implicit surfaces, but it is not.
For my initial testing, I tried with two spheres circles, and the set operation difference. i.e A - B. One circle is moving and the other one is stationary. Here's the approach I tried when picking vertex scalars and when classifying corner vertices as inside or outside. The code is written in C++. OpenGL is used for rendering, but that's not important. Normal rendering without any CSG operations does give the expected result.
void march(const vec2& cmin, //min x and y for the grid cell
const vec2& cmax, //max x and y for the grid cell
std::vector<vec2>& tri,
float iso,
float (*cmp1)(const vec2&), //distance from stationary circle
float (*cmp2)(const vec2&) //distance from moving circle
)
{
unsigned int squareindex = 0;
float scalar[4];
vec2 verts[8];
/* initial setup of the grid cell */
verts[0] = vec2(cmax.x, cmax.y);
verts[2] = vec2(cmin.x, cmax.y);
verts[4] = vec2(cmin.x, cmin.y);
verts[6] = vec2(cmax.x, cmin.y);
float s1,s2;
/**********************************
********For-loop of interest******
*******Set difference between ****
*******two implicit surfaces******
**********************************/
for(int i=0,j=0; i<4; ++i, j+=2){
s1 = cmp1(verts[j]);
s2 = cmp2(verts[j]);
if((s1 < iso)){ //if inside circle1
if((s2 < iso)){ //if inside circle2
scalar[i] = s2; //then set the scalar to the moving circle
} else {
scalar[i] = s1; //only inside circle1
squareindex |= (1<<i); //mark as inside
}
}
else {
scalar[i] = s1; //inside neither circle
}
}
if(squareindex == 0)
return;
/* Usual interpolation between edge points to compute
the new intersection points */
verts[1] = mix(iso, verts[0], verts[2], scalar[0], scalar[1]);
verts[3] = mix(iso, verts[2], verts[4], scalar[1], scalar[2]);
verts[5] = mix(iso, verts[4], verts[6], scalar[2], scalar[3]);
verts[7] = mix(iso, verts[6], verts[0], scalar[3], scalar[0]);
for(int i=0; i<10; ++i){ //10 = maxmimum 3 triangles, + one end token
int index = triTable[squareindex][i]; //look up our indices for triangulation
if(index == -1)
break;
tri.push_back(verts[index]);
}
}
This gives me weird jaggies:
(source: mechcore.net)
It looks like the CSG operation is done without interpolation. It just "discards" the whole triangle. Do I need to interpolate in some other way, or combine the vertex scalar values? I'd love some help with this.
A full testcase can be downloaded HERE
EDIT: Basically, my implementation of marching squares works fine. It is my scalar field which is broken, and I wonder what the correct way would look like. Preferably I'm looking for a general approach to implement the three set operations I discussed above, for the usual primitives (circle, rectangle/square, plane)
EDIT 2: Here are some new images after implementing the answerer's whitepaper:
1.Difference
2.Intersection
3.Union
EDIT 3: I implemented this in 3D too, with proper shading/lighting:
1.Difference between a greater sphere and a smaller sphere
2.Difference between a greater sphere and a smaller sphere in the center, clipped by two planes on both sides, and then union with a sphere in the center.
3.Union between two cylinders.