Premise 1:
Regarding neurons in a RNN layer - it is my understanding that at "each time step, every neuron receives both the input vector x (t) and the output vector from the previous time step y (t –1)" [1]:
Premise 2:
It is also my understanding that in Pytorch's GRU layer, input_size and hidden_size mean the following:
- input_size – The number of expected features in the input x
- hidden_size – The number of features in the hidden state h
So naturally, hidden_size should represent the number of neurons in a GRU layer.
My question:
Given the following GRU layer:
# assume that hidden_size = 3
class Encoder(nn.Module):
def __init__(self, src_dictionary_size, hidden_size):
super(Encoder, self).__init__()
self.embedding = nn.Embedding(src_dictionary_size, hidden_size)
self.gru = nn.GRU(input_size = hidden_size, hidden_size = hidden_size)
Assuming a hidden_size of 3, my understanding is that the GRU layer above would have 3 neurons, each which accepts an input vector of size 3 simultaneously for every timestep.
My question is: why do the arguments to hidden_size and input_size have to be equal? I.e. why can't each of the 3 neurons accept say, an input vector of size 5?
Case in point: both of the following produce size mismatch:
self.gru = nn.GRU(input_size = hidden_size, hidden_size = hidden_size-1)
self.gru = nn.GRU(input_size = hidden_size, hidden_size = hidden_size+1)
[1] Géron, Aurélien. Hands-On Machine Learning with Scikit-Learn and TensorFlow (p. 388). O'Reilly Media. Kindle Edition.
[3] https://pytorch.org/docs/stable/nn.html#torch.nn.GRU
Adding full code for reproducibility:
import torch
import torch.nn as nn
class Encoder(nn.Module):
def __init__(self, src_dictionary_size, hidden_size):
super(Encoder, self).__init__()
self.hidden_size = hidden_size
self.embedding = nn.Embedding(src_dictionary_size, hidden_size)
self.gru = nn.GRU(input_size = hidden_size, hidden_size = hidden_size-1)
def forward(self, pad_seqs, seq_lengths, hidden):
"""
Args:
pad_seqs of shape (max_seq_length, batch_size, 1): Padded source sequences.
seq_lengths: List of sequence lengths.
hidden of shape (1, batch_size, hidden_size): Initial states of the GRU.
Returns:
outputs of shape (max_seq_length, batch_size, hidden_size): Padded outputs of GRU at every step.
hidden of shape (1, batch_size, hidden_size): Updated states of the GRU.
"""
embedded_sqs = self.embedding(pad_seqs).squeeze(2)
packed_sqs = pack_padded_sequence(embedded_sqs, seq_lengths)
packed_output, h_n = self.gru(packed_sqs, hidden)
output, input_sizes = pad_packed_sequence(packed_output)
return output, h_n
def init_hidden(self, batch_size=1):
return torch.zeros(1, batch_size, self.hidden_size)
def test_Encoder_shapes():
hidden_size = 5
encoder = Encoder(src_dictionary_size=5, hidden_size=hidden_size)
# maximum word count
max_seq_length = 4
# num sentences
batch_size = 2
hidden = encoder.init_hidden(batch_size=batch_size)
# these are padded sequences (sentences of words). There are 2 sentences (i.e. 2 batches) with a maximum of 4 words.
pad_seqs = torch.tensor([
[1, 2],
[2, 3],
[3, 0],
[4, 0]
]).view(max_seq_length, batch_size, 1)
outputs, new_hidden = encoder.forward(pad_seqs=pad_seqs, seq_lengths=[4, 2], hidden=hidden)
assert outputs.shape == torch.Size([4, batch_size, hidden_size]), f"Bad outputs.shape: {outputs.shape}"
assert new_hidden.shape == torch.Size([1, batch_size, hidden_size]), f"Bad new_hidden.shape: {new_hidden.shape}"
print('Success')
test_Encoder_shapes()