I am writing a simple kernel in armv8 (aarch64).
MMU config:
- 48 VA bits (T1SZ=64-48=16)
- 4K page size
- All physical RAM flat mapped into kernel virtual memory (on TTBR1_EL1) (MMU is active with TTBR0_EL1=0, so I'm only using addresses in 0xffff< addr >, all flat-mapped into physical memory)
I'm mapping a new address space (starting at 1<<40) to some free physical region. When I try to access address 1<<40, I get an exception (of type "EL1 using SP1, synchronous"):
ESR_EL1=0x96000044
FAR_EL1=0xffff010000000000
Inspecting other registers, I have:
TTBR1_EL1=0x82000000
TTBR1_EL1[2]=0x0000000082003003
So, based on ARM Architecture Reference Manual for ARMv8 (ARMv8-A profile):
- ESR (exception syndrome register) translates into: Exception Class=100101 (Data abort without a change in exception level) on pages D7-1933 sq. ; WnR=1 (faulting instruction is a write) ; DFSC=0b000100 (translation fault at level 0) on page D7-1958 ;
- FAR_EL1 is the faulting address ; it indicates TTBR1_EL1 is used (since high bits are all 1). The VA top 9 bits are 0b000000010, which indicate that entry 2 is used in the table ;
- Entry 2 in the table indicates a next-level table (low bits 0b11) at physical address 0x82003000.
So, translation fails at level 0, where it should not.
My question is: am I doing something wrong? Am I missing some info that could lead to the translation fault? And, more generally, how to debug a translation fault ?
Update:
Everthing works when I write to tables before enabling the MMU.
Whenever I write to tables AFTER enabling the MMU (via flat-mapped table region), mapping never works. I wonder why this happens.
I also tried manually writing to the selected tables (to remove any side effect from my mmapping function): same result (when writes are done before MMU is on, it works; after, it fails).
I tried doing tlbi
and dsb sy
instructions, followed by isb
, without effect. Only one CPU is running at this time so caching should not be a problem - write instructions and MMU talk to the same caches (but I will test it next).