Importance of Problem Statement
It is unclear what is being counted.
- Is the starting node set all nodes for which there is at least one outgoing edge, or is there a particular starting node criteria?
- Is the the ending node set the set of all nodes for which there are zero outgoing edges, or can any node for which there is at least one incoming edge be a possible ending node?
Define your problem so that there are no ambiguities.
Estimation
Estimations can be off by orders of magnitude when designed for randomly constructed directed graphs and the graph is very statistically skewed or systematic in its construction. This is typical of all estimation processes, but particularly pronounced in graphs because of their exponential pattern complexity potential.
Two Optimizing Points
The std::bitset model will be slower than bool values for most processor architectures because of the instruction set mechanics of testing a bit at a particular bit offset. The bitset is more useful when memory footprint, not speed is the critical factor.
Eliminating cases or reducing via deductions is important. For instance, if there are nodes for which there is only one outgoing edge, one can calculate the number of paths without it and add to the number of paths in the sub-graph the number of paths from the node from which it points.
Resorting to Clusters
The problem can be executed on a cluster by distributing according to starting node. Some problems simply require super-computing. If you have 1,000,000 starting nodes and 10 processors, you can place 100,000 starting node cases on each processor. The above case eliminations and reductions should be done prior to distributing cases.
A Typical Depth First Recursion and How to Optimize It
Here is a small program that provides a basic depth first, acyclic traversal from any node to any node, which can be altered, placed in a loop, or distributed. The list can be placed into a static native array by using a template with a size as one parameter if the maximum data set size is known, which reduces iteration and indexing times.
#include <iostream>
#include <list>
class DirectedGraph {
private:
int miNodes;
std::list<int> * mnpEdges;
bool * mpVisitedFlags;
private:
void initAlreadyVisited() {
for (int i = 0; i < miNodes; ++ i)
mpVisitedFlags[i] = false;
}
void recurse(int iCurrent, int iDestination,
int path[], int index,
std::list<std::list<int> *> * pnai) {
mpVisitedFlags[iCurrent] = true;
path[index ++] = iCurrent;
if (iCurrent == iDestination) {
auto pni = new std::list<int>;
for (int i = 0; i < index; ++ i)
pni->push_back(path[i]);
pnai->push_back(pni);
} else {
auto it = mnpEdges[iCurrent].begin();
auto itBeyond = mnpEdges[iCurrent].end();
while (it != itBeyond) {
if (! mpVisitedFlags[* it])
recurse(* it, iDestination,
path, index, pnai);
++ it;
}
}
-- index;
mpVisitedFlags[iCurrent] = false;
}
public:
DirectedGraph(int iNodes) {
miNodes = iNodes;
mnpEdges = new std::list<int>[iNodes];
mpVisitedFlags = new bool[iNodes];
}
~DirectedGraph() {
delete mpVisitedFlags;
}
void addEdge(int u, int v) {
mnpEdges[u].push_back(v);
}
std::list<std::list<int> *> * findPaths(int iStart,
int iDestination) {
initAlreadyVisited();
auto path = new int[miNodes];
auto pnpi = new std::list<std::list<int> *>();
recurse(iStart, iDestination, path, 0, pnpi);
delete path;
return pnpi;
}
};
int main() {
DirectedGraph dg(5);
dg.addEdge(0, 1);
dg.addEdge(0, 2);
dg.addEdge(0, 3);
dg.addEdge(1, 3);
dg.addEdge(1, 4);
dg.addEdge(2, 0);
dg.addEdge(2, 1);
dg.addEdge(4, 1);
dg.addEdge(4, 3);
int startingNode = 0;
int destinationNode = 1;
auto pnai = dg.findPaths(startingNode, destinationNode);
std::cout
<< "Unique paths from "
<< startingNode
<< " to "
<< destinationNode
<< std::endl
<< std::endl;
bool bFirst;
std::list<int> * pi;
auto it = pnai->begin();
auto itBeyond = pnai->end();
std::list<int>::iterator itInner;
std::list<int>::iterator itInnerBeyond;
while (it != itBeyond) {
bFirst = true;
pi = * it ++;
itInner = pi->begin();
itInnerBeyond = pi->end();
while (itInner != itInnerBeyond) {
if (bFirst)
bFirst = false;
else
std::cout << ' ';
std::cout << (* itInner ++);
}
std::cout << std::endl;
delete pi;
}
delete pnai;
return 0;
}