I have daily data with multiple categorical values, stored as a data frame:
YYYYMM Date ID Count
201401 01/01/2014 A 151
201401 01/01/2014 B 68
201401 01/01/2014 C 487
201401 02/01/2014 A 198
201401 02/01/2014 B 97
201401 02/01/2014 C 403
I am trying to plot a moving average against the actual values, using ggplot.
What I would like to do is create a 5th column in my data frame which has the mean in it.
I have tried this solution (found here: Constructing moving average over a categorical variable in R)
df$Mean<-0
library(plyr)
library(zoo)
ddply(
df, "ID",
transform,
df$Mean<-rollmean(Count, 7, na.pad=TRUE)
)
and it works, but it calculates the mean for every column in my data frame, and makes another data frame within the existing one, so I end up with something like this:
YYYYMM Date ID Count Mean.YYYYMM Mean.Date Mean.ID Mean.Count
201401 01/01/2014 A 151 201401 01/01/2014 B 58.90
201401 01/01/2014 B 68 201401 01/01/2014 B 62.05
201401 01/01/2014 C 487 201401 01/01/2014 B 61.84
201401 02/01/2014 A 198 201401 01/01/2014 B 58.02
201401 02/01/2014 B 97 201401 01/01/2014 B 57.65
201401 02/01/2014 C 403 201401 01/01/2014 B 59.65
When I try and plot this
for (var in unique(df$ID))
{
ggplot(df[df$ID==var,], aes(x=Date)) +
geom_line(aes(y=Count),color="blue") +
geom_line(aes(y=Mean$Count),color="grey",linetype="dashed") +
facet_wrap(~ID) +
theme_bw()
}
I get an error message. I'm wondering what I'm missing here, or if there is another way to go about this?