What is the difference between map and flatMap and a good use case for each?
Asked Answered
I

17

307

Can someone explain to me the difference between map and flatMap and what is a good use case for each?

What does "flatten the results" mean? What is it good for?

Illume answered 12/3, 2014 at 11:54 Comment(3)
Since you added the Spark tag, I'll assume that you're asking about RDD.map and RDD.flatMap in Apache Spark. In general, Spark's RDD operations are modeled after their corresponding Scala collection operations. The answers in https://mcmap.net/q/101528/-scala-iterable-map-vs-iterable-flatmap/590203, which discuss the distinction between map and flatMap in Scala, may be helpful to you.Pastry
Most of the examples here seems to assume flatMap operates on collection only, which is not the case.Ebullient
#26685062Cytokinesis
C
222

Here is an example of the difference, as a spark-shell session:

First, some data - two lines of text:

val rdd = sc.parallelize(Seq("Roses are red", "Violets are blue"))  // lines

rdd.collect

    res0: Array[String] = Array("Roses are red", "Violets are blue")

Now, map transforms an RDD of length N into another RDD of length N.

For example, it maps from two lines into two line-lengths:

rdd.map(_.length).collect

    res1: Array[Int] = Array(13, 16)

But flatMap (loosely speaking) transforms an RDD of length N into a collection of N collections, then flattens these into a single RDD of results.

rdd.flatMap(_.split(" ")).collect

    res2: Array[String] = Array("Roses", "are", "red", "Violets", "are", "blue")

We have multiple words per line, and multiple lines, but we end up with a single output array of words

Just to illustrate that, flatMapping from a collection of lines to a collection of words looks like:

["aa bb cc", "", "dd"] => [["aa","bb","cc"],[],["dd"]] => ["aa","bb","cc","dd"]

The input and output RDDs will therefore typically be of different sizes for flatMap.

If we had tried to use map with our split function, we'd have ended up with nested structures (an RDD of arrays of words, with type RDD[Array[String]]) because we have to have exactly one result per input:

rdd.map(_.split(" ")).collect

    res3: Array[Array[String]] = Array(
                                     Array(Roses, are, red), 
                                     Array(Violets, are, blue)
                                 )

Finally, one useful special case is mapping with a function which might not return an answer, and so returns an Option. We can use flatMap to filter out the elements that return None and extract the values from those that return a Some:

val rdd = sc.parallelize(Seq(1,2,3,4))

def myfn(x: Int): Option[Int] = if (x <= 2) Some(x * 10) else None

rdd.flatMap(myfn).collect

    res3: Array[Int] = Array(10,20)

(noting here that an Option behaves rather like a list that has either one element, or zero elements)

Culprit answered 19/3, 2014 at 15:21 Comment(3)
Would calling split within map give ["a b c", "", "d"] => [["a","b","c"],[],["d"]]?Become
Yes - (but note that my informal notation was just meant to indicate a collection of some kind - in fact mapping split over a list of Strings will produce a List of Arrays)Culprit
Thanks for writing it up, this is the best explanation I have read to distinguish the difference between the sameCambrel
T
130

Generally we use word count example in hadoop. I will take the same use case and will use map and flatMap and we will see the difference how it is processing the data.

Below is the sample data file.

hadoop is fast
hive is sql on hdfs
spark is superfast
spark is awesome

The above file will be parsed using map and flatMap.

Using map

>>> wc = data.map(lambda line:line.split(" "));
>>> wc.collect()
[u'hadoop is fast', u'hive is sql on hdfs', u'spark is superfast', u'spark is awesome']

Input has 4 lines and output size is 4 as well, i.e., N elements ==> N elements.

Using flatMap

>>> fm = data.flatMap(lambda line:line.split(" "));
>>> fm.collect()
[u'hadoop', u'is', u'fast', u'hive', u'is', u'sql', u'on', u'hdfs', u'spark', u'is', u'superfast', u'spark', u'is', u'awesome']

The output is different from map.


Let's assign 1 as value for each key to get the word count.

  • fm: RDD created by using flatMap
  • wc: RDD created using map
>>> fm.map(lambda word : (word,1)).collect()
[(u'hadoop', 1), (u'is', 1), (u'fast', 1), (u'hive', 1), (u'is', 1), (u'sql', 1), (u'on', 1), (u'hdfs', 1), (u'spark', 1), (u'is', 1), (u'superfast', 1), (u'spark', 1), (u'is', 1), (u'awesome', 1)]

Whereas flatMap on RDD wc will give the below undesired output:

>>> wc.flatMap(lambda word : (word,1)).collect()
[[u'hadoop', u'is', u'fast'], 1, [u'hive', u'is', u'sql', u'on', u'hdfs'], 1, [u'spark', u'is', u'superfast'], 1, [u'spark', u'is', u'awesome'], 1]

You can't get the word count if map is used instead of flatMap.

As per the definition, difference between map and flatMap is:

map: It returns a new RDD by applying given function to each element of the RDD. Function in map returns only one item.

flatMap: Similar to map, it returns a new RDD by applying a function to each element of the RDD, but output is flattened.

Togs answered 15/1, 2016 at 23:12 Comment(5)
i feel this answer is better than the accepted answer.Bairam
Why on earth would you create illegible screenshots, when you could just copy paste the output text?Oldline
So flatMap() is map() + "flatten" and I know it doesn't make much sense but is there any kind of "flatten" function that we can use after map()?Mays
Your code has a misleading typo. The result of .map(lambda line:line.split(" ")) is not an array of strings. You should change data.collect() to wc.collect and you will see an array of arrays.Marris
In case of map function, the example is wrong. It should return a nested arrey: [[u'hadoop], [is], [fast']], [[u'hive], [is], [sql], [on], [hdfs']], [[u'spark], [is], [superfast']], [[u'spark], [is], [awesome']]Weiss
T
29

It boils down to your initial question: what you mean by flattening ?

When you use flatMap, a "multi-dimensional" collection becomes "one-dimensional" collection.

val array1d = Array ("1,2,3", "4,5,6", "7,8,9")  
//array1d is an array of strings

val array2d = array1d.map(x => x.split(","))
//array2d will be : Array( Array(1,2,3), Array(4,5,6), Array(7,8,9) )

val flatArray = array1d.flatMap(x => x.split(","))
//flatArray will be : Array (1,2,3,4,5,6,7,8,9)

You want to use a flatMap when,

  • your map function results in creating multi layered structures
  • but all you want is a simple - flat - one dimensional structure, by removing ALL the internal groupings
Tombaugh answered 3/3, 2018 at 7:4 Comment(0)
S
20

all examples are good....Here is nice visual illustration... source courtesy : DataFlair training of spark

Map : A map is a transformation operation in Apache Spark. It applies to each element of RDD and it returns the result as new RDD. In the Map, operation developer can define his own custom business logic. The same logic will be applied to all the elements of RDD.

Spark RDD map function takes one element as input process it according to custom code (specified by the developer) and returns one element at a time. Map transforms an RDD of length N into another RDD of length N. The input and output RDDs will typically have the same number of records.

enter image description here

Example of map using scala :

val x = spark.sparkContext.parallelize(List("spark", "map", "example",  "sample", "example"), 3)
val y = x.map(x => (x, 1))
y.collect
// res0: Array[(String, Int)] = 
//    Array((spark,1), (map,1), (example,1), (sample,1), (example,1))

// rdd y can be re writen with shorter syntax in scala as 
val y = x.map((_, 1))
y.collect
// res1: Array[(String, Int)] = 
//    Array((spark,1), (map,1), (example,1), (sample,1), (example,1))

// Another example of making tuple with string and it's length
val y = x.map(x => (x, x.length))
y.collect
// res3: Array[(String, Int)] = 
//    Array((spark,5), (map,3), (example,7), (sample,6), (example,7))

FlatMap :

A flatMap is a transformation operation. It applies to each element of RDD and it returns the result as new RDD. It is similar to Map, but FlatMap allows returning 0, 1 or more elements from map function. In the FlatMap operation, a developer can define his own custom business logic. The same logic will be applied to all the elements of the RDD.

What does "flatten the results" mean?

A FlatMap function takes one element as input process it according to custom code (specified by the developer) and returns 0 or more element at a time. flatMap() transforms an RDD of length N into another RDD of length M.

enter image description here

Example of flatMap using scala :

val x = spark.sparkContext.parallelize(List("spark flatmap example",  "sample example"), 2)

// map operation will return Array of Arrays in following case : check type of res0
val y = x.map(x => x.split(" ")) // split(" ") returns an array of words
y.collect
// res0: Array[Array[String]] = 
//  Array(Array(spark, flatmap, example), Array(sample, example))

// flatMap operation will return Array of words in following case : Check type of res1
val y = x.flatMap(x => x.split(" "))
y.collect
//res1: Array[String] = 
//  Array(spark, flatmap, example, sample, example)

// RDD y can be re written with shorter syntax in scala as 
val y = x.flatMap(_.split(" "))
y.collect
//res2: Array[String] = 
//  Array(spark, flatmap, example, sample, example)
Sudderth answered 2/5, 2019 at 2:27 Comment(0)
L
18

If you are asking the difference between RDD.map and RDD.flatMap in Spark, map transforms an RDD of size N to another one of size N . eg.

myRDD.map(x => x*2)

for example, if myRDD is composed of Doubles .

While flatMap can transform the RDD into anther one of a different size: eg.:

myRDD.flatMap(x =>new Seq(2*x,3*x))

which will return an RDD of size 2*N or

myRDD.flatMap(x =>if x<10 new Seq(2*x,3*x) else new Seq(x) )
Leis answered 24/4, 2014 at 13:46 Comment(0)
O
14

Use test.md as a example:

➜  spark-1.6.1 cat test.md
This is the first line;
This is the second line;
This is the last line.

scala> val textFile = sc.textFile("test.md")
scala> textFile.map(line => line.split(" ")).count()
res2: Long = 3

scala> textFile.flatMap(line => line.split(" ")).count()
res3: Long = 15

scala> textFile.map(line => line.split(" ")).collect()
res0: Array[Array[String]] = Array(Array(This, is, the, first, line;), Array(This, is, the, second, line;), Array(This, is, the, last, line.))

scala> textFile.flatMap(line => line.split(" ")).collect()
res1: Array[String] = Array(This, is, the, first, line;, This, is, the, second, line;, This, is, the, last, line.)

If you use map method, you will get the lines of test.md, for flatMap method, you will get the number of words.

The map method is similar to flatMap, they are all return a new RDD. map method often to use return a new RDD, flatMap method often to use split words.

Orourke answered 17/6, 2016 at 7:41 Comment(0)
D
11

map and flatMap are similar, in the sense they take a line from the input RDD and apply a function on it. The way they differ is that the function in map returns only one element, while function in flatMap can return a list of elements (0 or more) as an iterator.

Also, the output of the flatMap is flattened. Although the function in flatMap returns a list of elements, the flatMap returns an RDD which has all the elements from the list in a flat way (not a list).

Diffract answered 1/9, 2015 at 12:44 Comment(0)
M
9

map returns RDD of equal number of elements while flatMap may not.

An example use case for flatMap Filter out missing or incorrect data.

An example use case for map Use in wide variety of cases where is the number of elements of input and output are the same.

number.csv

1
2
3
-
4
-
5

map.py adds all numbers in add.csv.

from operator import *

def f(row):
  try:
    return float(row)
  except Exception:
    return 0

rdd = sc.textFile('a.csv').map(f)

print(rdd.count())      # 7
print(rdd.reduce(add))  # 15.0

flatMap.py uses flatMap to filtered out missing data before addition. Less numbers are added compared to the previous version.

from operator import *

def f(row):
  try:
    return [float(row)]
  except Exception:
    return []

rdd = sc.textFile('a.csv').flatMap(f)

print(rdd.count())      # 5
print(rdd.reduce(add))  # 15.0
Morphophonemics answered 14/2, 2016 at 23:20 Comment(0)
S
6

The difference can be seen from below sample pyspark code:

rdd = sc.parallelize([2, 3, 4])
rdd.flatMap(lambda x: range(1, x)).collect()
Output:
[1, 1, 2, 1, 2, 3]


rdd.map(lambda x: range(1, x)).collect()
Output:
[[1], [1, 2], [1, 2, 3]]
Sherrilsherrill answered 17/11, 2017 at 11:0 Comment(0)
S
5

map: It returns a new RDD by applying a function to each element of the RDD. Function in .map can return only one item.

flatMap: Similar to map, it returns a new RDD by applying a function to each element of the RDD, but the output is flattened.

Also, function in flatMap can return a list of elements (0 or more)

For Example:

sc.parallelize([3,4,5]).map(lambda x: range(1,x)).collect()

Output: [[1, 2], [1, 2, 3], [1, 2, 3, 4]]

sc.parallelize([3,4,5]).flatMap(lambda x: range(1,x)).collect()

Output: notice o/p is flattened out in a single list [1, 2, 1, 2, 3, 1, 2, 3, 4]

Source:https://www.linkedin.com/pulse/difference-between-map-flatmap-transformations-spark-pyspark-pandey/

Suksukarno answered 26/6, 2018 at 22:45 Comment(0)
F
4

RDD.map returns all elements in single array

RDD.flatMap returns elements in Arrays of array

let's assume we have text in text.txt file as

Spark is an expressive framework
This text is to understand map and faltMap functions of Spark RDD

Using map

val text=sc.textFile("text.txt").map(_.split(" ")).collect

output:

text: **Array[Array[String]]** = Array(Array(Spark, is, an, expressive, framework), Array(This, text, is, to, understand, map, and, faltMap, functions, of, Spark, RDD))

Using flatMap

val text=sc.textFile("text.txt").flatMap(_.split(" ")).collect

output:

 text: **Array[String]** = Array(Spark, is, an, expressive, framework, This, text, is, to, understand, map, and, faltMap, functions, of, Spark, RDD)
Fecundity answered 12/9, 2018 at 6:50 Comment(0)
M
3

Flatmap and Map both transforms the collection.

Difference:

map(func)
Return a new distributed dataset formed by passing each element of the source through a function func.

flatMap(func)
Similar to map, but each input item can be mapped to 0 or more output items (so func should return a Seq rather than a single item).

The transformation function:
map: One element in -> one element out.
flatMap: One element in -> 0 or more elements out (a collection).

Manis answered 24/10, 2016 at 7:16 Comment(0)
T
2

For all those who've wanted PySpark related:

Example transformation: flatMap

>>> a="hello what are you doing"
>>> a.split()

['hello', 'what', 'are', 'you', 'doing']

>>> b=["hello what are you doing","this is rak"]
>>> b.split()

Traceback (most recent call last): File "", line 1, in AttributeError: 'list' object has no attribute 'split'

>>> rline=sc.parallelize(b)
>>> type(rline)

>>> def fwords(x):
...     return x.split()


>>> rword=rline.map(fwords)
>>> rword.collect()

[['hello', 'what', 'are', 'you', 'doing'], ['this', 'is', 'rak']]

>>> rwordflat=rline.flatMap(fwords)
>>> rwordflat.collect()

['hello', 'what', 'are', 'you', 'doing', 'this', 'is', 'rak']

Hope it helps :)

Trimmer answered 1/5, 2017 at 16:55 Comment(0)
M
0

map :

is a higher-order method that takes a function as input and applies it to each element in the source RDD.

http://commandstech.com/difference-between-map-and-flatmap-in-spark-what-is-map-and-flatmap-with-examples/

flatMap:

a higher-order method and transformation operation that takes an input function.

Manslaughter answered 5/10, 2019 at 10:2 Comment(0)
M
0

map

Return a new RDD by applying a function to each element of this RDD.

>>> rdd = sc.parallelize([2, 3, 4])
>>> sorted(rdd.map(lambda x: [(x, x), (x, x)]).collect())
[[(2, 2), (2, 2)], [(3, 3), (3, 3)], [(4, 4), (4, 4)]]

flatMap

Return a new RDD by first applying a function to all elements of this RDD, and then flattening the results. Here transformation of one element to many element is possible

>>> rdd = sc.parallelize([2, 3, 4])
>>> sorted(rdd.flatMap(lambda x: [(x, x), (x, x)]).collect())
[(2, 2), (2, 2), (3, 3), (3, 3), (4, 4), (4, 4)]
Manhole answered 7/3, 2021 at 7:12 Comment(0)
M
-1
  • map(func) Return a new distributed dataset formed by passing each element of the source through a function func declared.so map()is single term

whiles

  • flatMap(func) Similar to map, but each input item can be mapped to 0 or more output items so func should return a Sequence rather than a single item.
Muire answered 23/2, 2018 at 15:48 Comment(0)
A
-2

Difference in output of map and flatMap:

1.flatMap

val a = sc.parallelize(1 to 10, 5)

a.flatMap(1 to _).collect()

Output:

 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

2.map:

val a = sc.parallelize(List("dog", "salmon", "salmon", "rat", "elephant"), 3)

val b = a.map(_.length).collect()

Output:

3 6 6 3 8
Amsterdam answered 4/4, 2017 at 11:22 Comment(0)

© 2022 - 2024 — McMap. All rights reserved.