I want to calculate (weighted) logistic regression in Python. The weights were calculated to adjust the distribution of the sample regarding the population. However, the results don´t change if I use weights.
import numpy as np
import pandas as pd
import statsmodels.api as sm
The data looks like this. The target variable is VISIT
. The features are all other variables except WEIGHT_both
(which is the weight I want to use).
df.head()
WEIGHT_both VISIT Q19_1 Q19_2 Q19_3 Q19_4 Q19_5 Q19_6 Q19_7 Q19_8 ... Q19_23 Q19_24 Q19_25 Q19_26 Q19_27 Q19_28 Q19_29 Q19_30 Q19_31 Q19_32
0 0.022320 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ... 4.0 4.0 1.0 1.0 1.0 1.0 2.0 3.0 3.0 2.0
1 0.027502 1.0 3.0 2.0 2.0 2.0 3.0 4.0 3.0 2.0 ... 3.0 2.0 2.0 2.0 2.0 4.0 2.0 4.0 2.0 2.0
2 0.022320 1.0 2.0 3.0 1.0 4.0 3.0 3.0 3.0 2.0 ... 3.0 3.0 3.0 2.0 2.0 1.0 2.0 2.0 1.0 1.0
3 0.084499 1.0 2.0 2.0 2.0 2.0 2.0 4.0 1.0 1.0 ... 2.0 2.0 1.0 1.0 1.0 2.0 1.0 2.0 1.0 1.0
4 0.022320 1.0 3.0 4.0 3.0 3.0 3.0 2.0 3.0 3.0 ... 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
Without the weight the model looks like this:
X = df.drop('WEIGHT_both', axis = 1)
X = X.drop('VISIT', axis = 1)
X = sm.add_constant(X)
w = = df['WEIGHT_both']
Y= df['VISIT']
fit = sm.Logit(Y, X).fit()
fit.summary()
Dep. Variable: VISIT No. Observations: 7971
Model: Logit Df Residuals: 7938
Method: MLE Df Model: 32
Date: Sun, 05 Jul 2020 Pseudo R-squ.: 0.2485
Time: 16:41:12 Log-Likelihood: -3441.2
converged: True LL-Null: -4578.8
Covariance Type: nonrobust LLR p-value: 0.000
coef std err z P>|z| [0.025 0.975]
const 3.8098 0.131 29.126 0.000 3.553 4.066
Q19_1 -0.1116 0.063 -1.772 0.076 -0.235 0.012
Q19_2 -0.2718 0.061 -4.483 0.000 -0.391 -0.153
Q19_3 -0.2145 0.061 -3.519 0.000 -0.334 -0.095
With the sample weight the result looks like this (no change):
fit2 = sm.Logit(Y, X, sample_weight = w).fit()
# same thing if I use class_weight
fit2.summary()
Dep. Variable: VISIT No. Observations: 7971
Model: Logit Df Residuals: 7938
Method: MLE Df Model: 32
Date: Sun, 05 Jul 2020 Pseudo R-squ.: 0.2485
Time: 16:41:12 Log-Likelihood: -3441.2
converged: True LL-Null: -4578.8
Covariance Type: nonrobust LLR p-value: 0.000
coef std err z P>|z| [0.025 0.975]
const 3.8098 0.131 29.126 0.000 3.553 4.066
Q19_1 -0.1116 0.063 -1.772 0.076 -0.235 0.012
Q19_2 -0.2718 0.061 -4.483 0.000 -0.391 -0.153
Q19_3 -0.2145 0.061 -3.519 0.000 -0.334 -0.095
I calculated the regression with other Programms (e.g. SPSS, R). The weighted result has to be different.
Here is an example (R-Code).
Without weights (same result as with Python code):
fit = glm(VISIT~., data = df[ -c(1)] , family = "binomial")
summary(fit)
Call:
glm(formula = VISIT ~ ., family = "binomial", data = df[-c(1)])
Deviance Residuals:
Min 1Q Median 3Q Max
-3.1216 -0.6984 0.3722 0.6838 2.1083
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.80983 0.13080 29.126 < 2e-16 ***
Q19_1 -0.11158 0.06296 -1.772 0.076374 .
Q19_2 -0.27176 0.06062 -4.483 7.36e-06 ***
Q19_3 -0.21451 0.06096 -3.519 0.000434 ***
Q19_4 0.22417 0.05163 4.342 1.41e-05 ***
With weights:
fit2 = glm(VISIT~., data = df[ -c(1)], weights = df$WEIGHT_both, family = "binomial")
summary(fit2)
Call:
glm(formula = VISIT ~ ., family = "binomial", data = df[-c(1)],
weights = df$WEIGHT_both)
Deviance Residuals:
Min 1Q Median 3Q Max
-2.4894 -0.3315 0.1619 0.2898 3.7878
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.950e-01 1.821e-01 2.718 0.006568 **
Q19_1 -6.497e-02 8.712e-02 -0.746 0.455835
Q19_2 -1.720e-02 8.707e-02 -0.198 0.843362
Q19_3 -1.114e-01 8.436e-02 -1.320 0.186743
Q19_4 1.898e-02 7.095e-02 0.268 0.789066
Any idea how to use weights in a logistic regression?