Suppose I have two DataFrames like so:
left = pd.DataFrame({'key1': ['foo', 'bar'], 'lval': [1, 2]})
right = pd.DataFrame({'key2': ['foo', 'bar'], 'rval': [4, 5]})
I want to merge them, so I try something like this:
pd.merge(left, right, left_on='key1', right_on='key2')
And I'm happy
key1 lval key2 rval
0 foo 1 foo 4
1 bar 2 bar 5
But I'm trying to use the join method, which I've been lead to believe is pretty similar.
left.join(right, on=['key1', 'key2'])
And I get this:
//anaconda/lib/python2.7/site-packages/pandas/tools/merge.pyc in _validate_specification(self)
406 if self.right_index:
407 if not ((len(self.left_on) == self.right.index.nlevels)):
--> 408 raise AssertionError()
409 self.right_on = [None] * n
410 elif self.right_on is not None:
AssertionError:
What am I missing?
merge
joins columns ofleft
to columns ofright
, which is what you want, butjoin(... on=[...])
joins columns ofleft
to index keys ofright
, which is not what you want. See my answer below for more details. – Hollingsheadon
option) against theother
's indexes. Remember, indexes for join. While merge() is a more generic method. – Dog