I see that you used the tensorflow tag, so I guess this is the backend you are using?
def categorical_crossentropy(output, target, from_logits=False):
"""Categorical crossentropy between an output tensor and a target tensor.
# Arguments
output: A tensor resulting from a softmax
(unless `from_logits` is True, in which
case `output` is expected to be the logits).
target: A tensor of the same shape as `output`.
from_logits: Boolean, whether `output` is the
result of a softmax, or is a tensor of logits.
# Returns
Output tensor.
This code comes from the keras source code. Looking directly at the code should answer all your questions :) If you need more info just ask !
EDIT :
Here is the code that interests you :
# Note: tf.nn.softmax_cross_entropy_with_logits
# expects logits, Keras expects probabilities.
if not from_logits:
# scale preds so that the class probas of each sample sum to 1
output /= tf.reduce_sum(output,
reduction_indices=len(output.get_shape()) - 1,
keep_dims=True)
# manual computation of crossentropy
epsilon = _to_tensor(_EPSILON, output.dtype.base_dtype)
output = tf.clip_by_value(output, epsilon, 1. - epsilon)
return - tf.reduce_sum(target * tf.log(output),
reduction_indices=len(output.get_shape()) - 1)
If you look at the return, they sum it... :)