How can I implement a general tree in Python? Is there a built-in data structure for this?
I recommend anytree (I am the author).
Example:
from anytree import Node, RenderTree
udo = Node("Udo")
marc = Node("Marc", parent=udo)
lian = Node("Lian", parent=marc)
dan = Node("Dan", parent=udo)
jet = Node("Jet", parent=dan)
jan = Node("Jan", parent=dan)
joe = Node("Joe", parent=dan)
print(udo)
Node('/Udo')
print(joe)
Node('/Udo/Dan/Joe')
for pre, fill, node in RenderTree(udo):
print("%s%s" % (pre, node.name))
Udo
├── Marc
│ └── Lian
└── Dan
├── Jet
├── Jan
└── Joe
print(dan.children)
(Node('/Udo/Dan/Jet'), Node('/Udo/Dan/Jan'), Node('/Udo/Dan/Joe'))
anytree has also a powerful API with:
- simple tree creation
- simple tree modification
- pre-order tree iteration
- post-order tree iteration
- resolve relative and absolute node paths
- walking from one node to an other.
- tree rendering (see example above)
- node attach/detach hookups
Python doesn't have the quite the extensive range of "built-in" data structures as Java does. However, because Python is dynamic, a general tree is easy to create. For example, a binary tree might be:
class Tree:
def __init__(self):
self.left = None
self.right = None
self.data = None
You can use it like this:
root = Tree()
root.data = "root"
root.left = Tree()
root.left.data = "left"
root.right = Tree()
root.right.data = "right"
If you need an arbitrary number of children per node, then use a list of children:
class Tree:
def __init__(self, data):
self.children = []
self.data = data
left = Tree("left")
middle = Tree("middle")
right = Tree("right")
root = Tree("root")
root.children = [left, middle, right]
class Tree
from object then –
Aldridge object
is sometimes just a guideline: If a class inherits from no other base classes, explicitly inherit from object. This also applies to nested classes. See Google Python Style Guide –
Potboy A generic tree is a node with zero or more children, each one a proper (tree) node. It isn't the same as a binary tree, they're different data structures, although both shares some terminology.
There isn't any builtin data structure for generic trees in Python, but it's easily implemented with classes.
class Tree(object):
"Generic tree node."
def __init__(self, name='root', children=None):
self.name = name
self.children = []
if children is not None:
for child in children:
self.add_child(child)
def __repr__(self):
return self.name
def add_child(self, node):
assert isinstance(node, Tree)
self.children.append(node)
# *
# /|\
# 1 2 +
# / \
# 3 4
t = Tree('*', [Tree('1'),
Tree('2'),
Tree('+', [Tree('3'),
Tree('4')])])
len(self.children)
–
Manson You can try:
from collections import defaultdict
def tree(): return defaultdict(tree)
users = tree()
users['harold']['username'] = 'hrldcpr'
users['handler']['username'] = 'matthandlersux'
As suggested here: https://gist.github.com/2012250
class Node:
"""
Class Node
"""
def __init__(self, value):
self.left = None
self.data = value
self.right = None
class Tree:
"""
Class tree will provide a tree as well as utility functions.
"""
def createNode(self, data):
"""
Utility function to create a node.
"""
return Node(data)
def insert(self, node , data):
"""
Insert function will insert a node into tree.
Duplicate keys are not allowed.
"""
#if tree is empty , return a root node
if node is None:
return self.createNode(data)
# if data is smaller than parent , insert it into left side
if data < node.data:
node.left = self.insert(node.left, data)
elif data > node.data:
node.right = self.insert(node.right, data)
return node
def search(self, node, data):
"""
Search function will search a node into tree.
"""
# if root is None or root is the search data.
if node is None or node.data == data:
return node
if node.data < data:
return self.search(node.right, data)
else:
return self.search(node.left, data)
def deleteNode(self,node,data):
"""
Delete function will delete a node into tree.
Not complete , may need some more scenarion that we can handle
Now it is handling only leaf.
"""
# Check if tree is empty.
if node is None:
return None
# searching key into BST.
if data < node.data:
node.left = self.deleteNode(node.left, data)
elif data > node.data:
node.right = self.deleteNode(node.right, data)
else: # reach to the node that need to delete from BST.
if node.left is None and node.right is None:
del node
if node.left == None:
temp = node.right
del node
return temp
elif node.right == None:
temp = node.left
del node
return temp
return node
def traverseInorder(self, root):
"""
traverse function will print all the node in the tree.
"""
if root is not None:
self.traverseInorder(root.left)
print(root.data)
self.traverseInorder(root.right)
def traversePreorder(self, root):
"""
traverse function will print all the node in the tree.
"""
if root is not None:
print(root.data)
self.traversePreorder(root.left)
self.traversePreorder(root.right)
def traversePostorder(self, root):
"""
traverse function will print all the node in the tree.
"""
if root is not None:
self.traversePostorder(root.left)
self.traversePostorder(root.right)
print(root.data)
def main():
root = None
tree = Tree()
root = tree.insert(root, 10)
print(root)
tree.insert(root, 20)
tree.insert(root, 30)
tree.insert(root, 40)
tree.insert(root, 70)
tree.insert(root, 60)
tree.insert(root, 80)
print("Traverse Inorder")
tree.traverseInorder(root)
print("Traverse Preorder")
tree.traversePreorder(root)
print("Traverse Postorder")
tree.traversePostorder(root)
if __name__ == "__main__":
main()
There aren't trees built in, but you can easily construct one by subclassing a Node type from List and writing the traversal methods. If you do this, I've found bisect useful.
There are also many implementations on PyPi that you can browse.
If I remember correctly, the Python standard lib doesn't include tree data structures for the same reason that the .NET base class library doesn't: locality of memory is reduced, resulting in more cache misses. On modern processors it's usually faster to just bring a large chunk of memory into the cache, and "pointer rich" data structures negate the benefit.
I implemented a rooted tree as a dictionary {child:parent}
. So for instance with the root node 0
, a tree might look like that:
tree={1:0, 2:0, 3:1, 4:2, 5:3}
This structure made it quite easy to go upward along a path from any node to the root, which was relevant for the problem I was working on.
{parent:[leftchild,rightchild]}
. –
Dissever Greg Hewgill's answer is great but if you need more nodes per level you can use a list|dictionary to create them: And then use method to access them either by name or order (like id)
class node(object):
def __init__(self):
self.name=None
self.node=[]
self.otherInfo = None
self.prev=None
def nex(self,child):
"Gets a node by number"
return self.node[child]
def prev(self):
return self.prev
def goto(self,data):
"Gets the node by name"
for child in range(0,len(self.node)):
if(self.node[child].name==data):
return self.node[child]
def add(self):
node1=node()
self.node.append(node1)
node1.prev=self
return node1
Now just create a root and build it up: ex:
tree=node() #create a node
tree.name="root" #name it root
tree.otherInfo="blue" #or what ever
tree=tree.add() #add a node to the root
tree.name="node1" #name it
root
/
child1
tree=tree.add()
tree.name="grandchild1"
root
/
child1
/
grandchild1
tree=tree.prev()
tree=tree.add()
tree.name="gchild2"
root
/
child1
/ \
grandchild1 gchild2
tree=tree.prev()
tree=tree.prev()
tree=tree.add()
tree=tree.name="child2"
root
/ \
child1 child2
/ \
grandchild1 gchild2
tree=tree.prev()
tree=tree.goto("child1") or tree=tree.nex(0)
tree.name="changed"
root
/ \
changed child2
/ \
grandchild1 gchild2
That should be enough for you to start figuring out how to make this work
class Tree(dict):
"""A tree implementation using python's autovivification feature."""
def __missing__(self, key):
value = self[key] = type(self)()
return value
#cast a (nested) dict to a (nested) Tree class
def __init__(self, data={}):
for k, data in data.items():
if isinstance(data, dict):
self[k] = type(self)(data)
else:
self[k] = data
works as a dictionary, but provides as many nested dicts you want. Try the following:
your_tree = Tree()
your_tree['a']['1']['x'] = '@'
your_tree['a']['1']['y'] = '#'
your_tree['a']['2']['x'] = '$'
your_tree['a']['3'] = '%'
your_tree['b'] = '*'
will deliver a nested dict ... which works as a tree indeed.
{'a': {'1': {'x': '@', 'y': '#'}, '2': {'x': '$'}, '3': '%'}, 'b': '*'}
... If you have already a dict, it will cast each level to a tree:
d = {'foo': {'amy': {'what': 'runs'} } }
tree = Tree(d)
print(d['foo']['amy']['what']) # returns 'runs'
d['foo']['amy']['when'] = 'now' # add new branch
In this way, you can keep edit/add/remove each dict level as you wish. All the dict methods for traversal etc, still apply.
dict
instead of defaultdict
? From my tests, extending defaultdict
instead of dict and then adding self.default_factory = type(self)
to the top of init should function the same way. –
Nador If someone needs a simpler way to do it, a tree is only a recursively nested list (since set is not hashable) :
[root, [child_1, [[child_11, []], [child_12, []]], [child_2, []]]]
Where each branch is a pair: [ object, [children] ]
and each leaf is a pair: [ object, [] ]
But if you need a class with methods, you can use anytree.
I've published a Python 3 tree implementation on my site: https://web.archive.org/web/20120723175438/www.quesucede.com/page/show/id/python_3_tree_implementation
Here's the code:
import uuid
def sanitize_id(id):
return id.strip().replace(" ", "")
(_ADD, _DELETE, _INSERT) = range(3)
(_ROOT, _DEPTH, _WIDTH) = range(3)
class Node:
def __init__(self, name, identifier=None, expanded=True):
self.__identifier = (str(uuid.uuid1()) if identifier is None else
sanitize_id(str(identifier)))
self.name = name
self.expanded = expanded
self.__bpointer = None
self.__fpointer = []
@property
def identifier(self):
return self.__identifier
@property
def bpointer(self):
return self.__bpointer
@bpointer.setter
def bpointer(self, value):
if value is not None:
self.__bpointer = sanitize_id(value)
@property
def fpointer(self):
return self.__fpointer
def update_fpointer(self, identifier, mode=_ADD):
if mode is _ADD:
self.__fpointer.append(sanitize_id(identifier))
elif mode is _DELETE:
self.__fpointer.remove(sanitize_id(identifier))
elif mode is _INSERT:
self.__fpointer = [sanitize_id(identifier)]
class Tree:
def __init__(self):
self.nodes = []
def get_index(self, position):
for index, node in enumerate(self.nodes):
if node.identifier == position:
break
return index
def create_node(self, name, identifier=None, parent=None):
node = Node(name, identifier)
self.nodes.append(node)
self.__update_fpointer(parent, node.identifier, _ADD)
node.bpointer = parent
return node
def show(self, position, level=_ROOT):
queue = self[position].fpointer
if level == _ROOT:
print("{0} [{1}]".format(self[position].name,
self[position].identifier))
else:
print("\t"*level, "{0} [{1}]".format(self[position].name,
self[position].identifier))
if self[position].expanded:
level += 1
for element in queue:
self.show(element, level) # recursive call
def expand_tree(self, position, mode=_DEPTH):
# Python generator. Loosly based on an algorithm from 'Essential LISP' by
# John R. Anderson, Albert T. Corbett, and Brian J. Reiser, page 239-241
yield position
queue = self[position].fpointer
while queue:
yield queue[0]
expansion = self[queue[0]].fpointer
if mode is _DEPTH:
queue = expansion + queue[1:] # depth-first
elif mode is _WIDTH:
queue = queue[1:] + expansion # width-first
def is_branch(self, position):
return self[position].fpointer
def __update_fpointer(self, position, identifier, mode):
if position is None:
return
else:
self[position].update_fpointer(identifier, mode)
def __update_bpointer(self, position, identifier):
self[position].bpointer = identifier
def __getitem__(self, key):
return self.nodes[self.get_index(key)]
def __setitem__(self, key, item):
self.nodes[self.get_index(key)] = item
def __len__(self):
return len(self.nodes)
def __contains__(self, identifier):
return [node.identifier for node in self.nodes
if node.identifier is identifier]
if __name__ == "__main__":
tree = Tree()
tree.create_node("Harry", "harry") # root node
tree.create_node("Jane", "jane", parent = "harry")
tree.create_node("Bill", "bill", parent = "harry")
tree.create_node("Joe", "joe", parent = "jane")
tree.create_node("Diane", "diane", parent = "jane")
tree.create_node("George", "george", parent = "diane")
tree.create_node("Mary", "mary", parent = "diane")
tree.create_node("Jill", "jill", parent = "george")
tree.create_node("Carol", "carol", parent = "jill")
tree.create_node("Grace", "grace", parent = "bill")
tree.create_node("Mark", "mark", parent = "jane")
print("="*80)
tree.show("harry")
print("="*80)
for node in tree.expand_tree("harry", mode=_WIDTH):
print(node)
print("="*80)
I've implemented trees using nested dicts. It is quite easy to do, and it has worked for me with pretty large data sets. I've posted a sample below, and you can see more at Google code
def addBallotToTree(self, tree, ballotIndex, ballot=""):
"""Add one ballot to the tree.
The root of the tree is a dictionary that has as keys the indicies of all
continuing and winning candidates. For each candidate, the value is also
a dictionary, and the keys of that dictionary include "n" and "bi".
tree[c]["n"] is the number of ballots that rank candidate c first.
tree[c]["bi"] is a list of ballot indices where the ballots rank c first.
If candidate c is a winning candidate, then that portion of the tree is
expanded to indicate the breakdown of the subsequently ranked candidates.
In this situation, additional keys are added to the tree[c] dictionary
corresponding to subsequently ranked candidates.
tree[c]["n"] is the number of ballots that rank candidate c first.
tree[c]["bi"] is a list of ballot indices where the ballots rank c first.
tree[c][d]["n"] is the number of ballots that rank c first and d second.
tree[c][d]["bi"] is a list of the corresponding ballot indices.
Where the second ranked candidates is also a winner, then the tree is
expanded to the next level.
Losing candidates are ignored and treated as if they do not appear on the
ballots. For example, tree[c][d]["n"] is the total number of ballots
where candidate c is the first non-losing candidate, c is a winner, and
d is the next non-losing candidate. This will include the following
ballots, where x represents a losing candidate:
[c d]
[x c d]
[c x d]
[x c x x d]
During the count, the tree is dynamically updated as candidates change
their status. The parameter "tree" to this method may be the root of the
tree or may be a sub-tree.
"""
if ballot == "":
# Add the complete ballot to the tree
weight, ballot = self.b.getWeightedBallot(ballotIndex)
else:
# When ballot is not "", we are adding a truncated ballot to the tree,
# because a higher-ranked candidate is a winner.
weight = self.b.getWeight(ballotIndex)
# Get the top choice among candidates still in the running
# Note that we can't use Ballots.getTopChoiceFromWeightedBallot since
# we are looking for the top choice over a truncated ballot.
for c in ballot:
if c in self.continuing | self.winners:
break # c is the top choice so stop
else:
c = None # no candidates left on this ballot
if c is None:
# This will happen if the ballot contains only winning and losing
# candidates. The ballot index will not need to be transferred
# again so it can be thrown away.
return
# Create space if necessary.
if not tree.has_key(c):
tree[c] = {}
tree[c]["n"] = 0
tree[c]["bi"] = []
tree[c]["n"] += weight
if c in self.winners:
# Because candidate is a winner, a portion of the ballot goes to
# the next candidate. Pass on a truncated ballot so that the same
# candidate doesn't get counted twice.
i = ballot.index(c)
ballot2 = ballot[i+1:]
self.addBallotToTree(tree[c], ballotIndex, ballot2)
else:
# Candidate is in continuing so we stop here.
tree[c]["bi"].append(ballotIndex)
If you are already using the networkx library, then you can implement a tree using that.
NetworkX is a Python package for the creation, manipulation, and study of the structure, dynamics, and functions of complex networks.
As 'tree' is another term for a (normally rooted) connected acyclic graph, and these are called 'arborescences' in NetworkX.
You may want to implement a plane tree (aka ordered tree) where each sibling has a unique rank and this is normally done via labelling the nodes.
However, graph language looks different from tree language, and the means of 'rooting' an arborescence is normally done by using a directed graph so, while there are some really cool functions and corresponding visualisations available, it would probably not be an ideal choice if you are not already using networkx.
An example of building a tree:
import networkx as nx
G = nx.Graph()
G.add_edge('A', 'B')
G.add_edge('B', 'C')
G.add_edge('B', 'D')
G.add_edge('A', 'E')
G.add_edge('E', 'F')
The library enables each node to be any hashable object, and there is no constraint on the number of children each node has.
bigtree
is a Python tree implementation that integrates with Python lists, dictionaries, and pandas DataFrame. It is pythonic, making it easy to learn and extendable to many types of workflows.
There are various components to bigtree
, namely
- Constructing Trees from list, dictionary, and pandas DataFrame
- Traversing Tree
- Modifying Tree (shift/copy nodes)
- Search Tree
- Helper methods (clone tree, prune tree, get the difference between two treess)
- Export tree (print to console, export tree to dictionary, pandas DataFrame, image etc.)
- Other tree structures: Binary Trees!
- Other graph structures: Directed Acyclic Graphs (DAGs)!
What more can I say... ah yes it is also well-documented.
Some examples:
from bigtree import list_to_tree, tree_to_dict, tree_to_dot
# Create tree from list, print tree
root = list_to_tree(["a/b/d", "a/c"])
print_tree(root)
# a
# ├── b
# │ └── d
# └── c
# Query tree
root.children
# (Node(/a/b, ), Node(/a/c, ))
# Export tree to dictionary / image
tree_to_dict(root)
# {
# '/a': {'name': 'a'},
# '/a/b': {'name': 'b'},
# '/a/b/d': {'name': 'd'},
# '/a/c': {'name': 'c'}
# }
graph = tree_to_dot(root, node_colour="gold")
graph.write_png("tree.png")
Source/Disclaimer: I'm the creator of bigtree
;)
Hi you may give itertree a try (I'm the author).
The package goes in the direction of anytree package but with a bit different focus. The performance on huge trees (>100000 items) is much better and it deals with iterators to have effective filter mechanism.
>>>from itertree import *
>>>root=iTree('root')
>>># add some children:
>>>root.append(iTree('Africa',data={'surface':30200000,'inhabitants':1257000000}))
>>>root.append(iTree('Asia', data={'surface': 44600000, 'inhabitants': 4000000000}))
>>>root.append(iTree('America', data={'surface': 42549000, 'inhabitants': 1009000000}))
>>>root.append(iTree('Australia&Oceania', data={'surface': 8600000, 'inhabitants': 36000000}))
>>>root.append(iTree('Europe', data={'surface': 10523000 , 'inhabitants': 746000000}))
>>># you might use __iadd__ operator for adding too:
>>>root+=iTree('Antarktika', data={'surface': 14000000, 'inhabitants': 1100})
>>># for building next level we select per index:
>>>root[0]+=iTree('Ghana',data={'surface':238537,'inhabitants':30950000})
>>>root[0]+=iTree('Niger', data={'surface': 1267000, 'inhabitants': 23300000})
>>>root[1]+=iTree('China', data={'surface': 9596961, 'inhabitants': 1411780000})
>>>root[1]+=iTree('India', data={'surface': 3287263, 'inhabitants': 1380004000})
>>>root[2]+=iTree('Canada', data={'type': 'country', 'surface': 9984670, 'inhabitants': 38008005})
>>>root[2]+=iTree('Mexico', data={'surface': 1972550, 'inhabitants': 127600000 })
>>># extend multiple items:
>>>root[3].extend([iTree('Australia', data={'surface': 7688287, 'inhabitants': 25700000 }), iTree('New Zealand', data={'surface': 269652, 'inhabitants': 4900000 })])
>>>root[4]+=iTree('France', data={'surface': 632733, 'inhabitants': 67400000 }))
>>># select parent per TagIdx - remember in itertree you might put items with same tag multiple times:
>>>root[TagIdx('Europe'0)]+=iTree('Finland', data={'surface': 338465, 'inhabitants': 5536146 })
The created tree can be rendered:
>>>root.render()
iTree('root')
└──iTree('Africa', data=iTData({'surface': 30200000, 'inhabitants': 1257000000}))
└──iTree('Ghana', data=iTData({'surface': 238537, 'inhabitants': 30950000}))
└──iTree('Niger', data=iTData({'surface': 1267000, 'inhabitants': 23300000}))
└──iTree('Asia', data=iTData({'surface': 44600000, 'inhabitants': 4000000000}))
└──iTree('China', data=iTData({'surface': 9596961, 'inhabitants': 1411780000}))
└──iTree('India', data=iTData({'surface': 3287263, 'inhabitants': 1380004000}))
└──iTree('America', data=iTData({'surface': 42549000, 'inhabitants': 1009000000}))
└──iTree('Canada', data=iTData({'surface': 9984670, 'inhabitants': 38008005}))
└──iTree('Mexico', data=iTData({'surface': 1972550, 'inhabitants': 127600000}))
└──iTree('Australia&Oceania', data=iTData({'surface': 8600000, 'inhabitants': 36000000}))
└──iTree('Australia', data=iTData({'surface': 7688287, 'inhabitants': 25700000}))
└──iTree('New Zealand', data=iTData({'surface': 269652, 'inhabitants': 4900000}))
└──iTree('Europe', data=iTData({'surface': 10523000, 'inhabitants': 746000000}))
└──iTree('France', data=iTData({'surface': 632733, 'inhabitants': 67400000}))
└──iTree('Finland', data=iTData({'surface': 338465, 'inhabitants': 5536146}))
└──iTree('Antarktika', data=iTData({'surface': 14000000, 'inhabitants': 1100}))
E.g. Filtering can be done like this:
>>>item_filter = Filter.iTFilterData(data_key='inhabitants', data_value=iTInterval(0, 20000000))
>>>iterator=root.iter_all(item_filter=item_filter)
>>>for i in iterator:
>>> print(i)
iTree("'New Zealand'", data=iTData({'surface': 269652, 'inhabitants': 4900000}), subtree=[])
iTree("'Finland'", data=iTData({'surface': 338465, 'inhabitants': 5536146}), subtree=[])
iTree("'Antarktika'", data=iTData({'surface': 14000000, 'inhabitants': 1100}), subtree=[])
You can create a Tree data structure using the dataclasses module in Python.
The iter method can be used to make the Tree iterable, allowing you to traverse the Tree by changing the order of the yield statements.
The contains method can be used to check if a specific value is present in the Tree.
from dataclasses import dataclass
# A
# / \
# B C
# / \ \
# D E F
# / \
# G H
@dataclass
class Node:
data: str
left: Node = None
right: Node = None
def __iter__(self):
if self.left:
yield from self.left
yield self
if self.right:
yield from self.right
def __contains__(self, other):
for node in self:
if node.data == other:
return True
return False
t = Node(
'A',
Node(
'B',
Node(
'D',
Node('G'),
Node('H'),
),
Node('E'),
),
Node(
'C',
right=Node('F'),
),
)
assert ('A' in t) is True
assert ('I' in t) is not True
for node in t:
print(node.data, ' -> ', end='')
# G -> D -> H -> B -> E -> A -> C -> F ->
Another tree implementation loosely based off of Bruno's answer:
class Node:
def __init__(self):
self.name: str = ''
self.children: List[Node] = []
self.parent: Node = self
def __getitem__(self, i: int) -> 'Node':
return self.children[i]
def add_child(self):
child = Node()
self.children.append(child)
child.parent = self
return child
def __str__(self) -> str:
def _get_character(x, left, right) -> str:
if x < left:
return '/'
elif x >= right:
return '\\'
else:
return '|'
if len(self.children):
children_lines: Sequence[List[str]] = list(map(lambda child: str(child).split('\n'), self.children))
widths: Sequence[int] = list(map(lambda child_lines: len(child_lines[0]), children_lines))
max_height: int = max(map(len, children_lines))
total_width: int = sum(widths) + len(widths) - 1
left: int = (total_width - len(self.name) + 1) // 2
right: int = left + len(self.name)
return '\n'.join((
self.name.center(total_width),
' '.join(map(lambda width, position: _get_character(position - width // 2, left, right).center(width),
widths, accumulate(widths, add))),
*map(
lambda row: ' '.join(map(
lambda child_lines: child_lines[row] if row < len(child_lines) else ' ' * len(child_lines[0]),
children_lines)),
range(max_height))))
else:
return self.name
And an example of how to use it:
tree = Node()
tree.name = 'Root node'
tree.add_child()
tree[0].name = 'Child node 0'
tree.add_child()
tree[1].name = 'Child node 1'
tree.add_child()
tree[2].name = 'Child node 2'
tree[1].add_child()
tree[1][0].name = 'Grandchild 1.0'
tree[2].add_child()
tree[2][0].name = 'Grandchild 2.0'
tree[2].add_child()
tree[2][1].name = 'Grandchild 2.1'
print(tree)
Which should output:
Root node / / \ Child node 0 Child node 1 Child node 2 | / \ Grandchild 1.0 Grandchild 2.0 Grandchild 2.1
__str__
function, namely accumulation
and add
. But the tree implementation itself works great. –
Pascual itertools.accumulate
and operator.add
, sorry for omitting that. –
Retardation Treelib is convenient for the task as well. Documentation can be found treelib.
from treelib import Node, Tree
tree = Tree() # creating an object
tree.create_node("Harry", "harry") # root node
tree.create_node("Jane", "jane", parent="harry") #adding nodes
tree.create_node("Bill", "bill", parent="harry")
tree.create_node("Diane", "diane", parent="jane")
tree.create_node("Mary", "mary", parent="diane")
tree.create_node("Mark", "mark", parent="jane")
tree.show()
Harry
├── Bill
└── Jane
├── Diane
│ └── Mary
└── Mark
Yet another example of creating trees in Python is using littletree (I am the author). I originally had a problem and solved it using nested dictionaries. At some point, I wanted something more treelike and I tried a few tree packages. I found most of them either a bit slow or difficult to extend to my own problem. Eventually I went back to my original approach and refactored it to a new tree library.
Its basic usage is as follows:
from littletree import Node
tree = Node(identifier="World")
tree["Asia"] = Node()
tree["Africa"] = Node()
tree["America"] = Node()
tree["Europe"] = Node()
tree.show() # Print the tree to console
tree.to_image().show() # Show tree as an image
Check here for its source and more examples.
If you want to create a tree data structure then first you have to create the treeElement object. If you create the treeElement object, then you can decide how your tree behaves.
To do this following is the TreeElement class:
class TreeElement (object):
def __init__(self):
self.elementName = None
self.element = []
self.previous = None
self.elementScore = None
self.elementParent = None
self.elementPath = []
self.treeLevel = 0
def goto(self, data):
for child in range(0, len(self.element)):
if (self.element[child].elementName == data):
return self.element[child]
def add(self):
single_element = TreeElement()
single_element.elementName = self.elementName
single_element.previous = self.elementParent
single_element.elementScore = self.elementScore
single_element.elementPath = self.elementPath
single_element.treeLevel = self.treeLevel
self.element.append(single_element)
return single_element
Now, we have to use this element to create the tree, I am using A* tree in this example.
class AStarAgent(Agent):
# Initialization Function: Called one time when the game starts
def registerInitialState(self, state):
return;
# GetAction Function: Called with every frame
def getAction(self, state):
# Sorting function for the queue
def sortByHeuristic(each_element):
if each_element.elementScore:
individual_score = each_element.elementScore[0][0] + each_element.treeLevel
else:
individual_score = admissibleHeuristic(each_element)
return individual_score
# check the game is over or not
if state.isWin():
print('Job is done')
return Directions.STOP
elif state.isLose():
print('you lost')
return Directions.STOP
# Create empty list for the next states
astar_queue = []
astar_leaf_queue = []
astar_tree_level = 0
parent_tree_level = 0
# Create Tree from the give node element
astar_tree = TreeElement()
astar_tree.elementName = state
astar_tree.treeLevel = astar_tree_level
astar_tree = astar_tree.add()
# Add first element into the queue
astar_queue.append(astar_tree)
# Traverse all the elements of the queue
while astar_queue:
# Sort the element from the queue
if len(astar_queue) > 1:
astar_queue.sort(key=lambda x: sortByHeuristic(x))
# Get the first node from the queue
astar_child_object = astar_queue.pop(0)
astar_child_state = astar_child_object.elementName
# get all legal actions for the current node
current_actions = astar_child_state.getLegalPacmanActions()
if current_actions:
# get all the successor state for these actions
for action in current_actions:
# Get the successor of the current node
next_state = astar_child_state.generatePacmanSuccessor(action)
if next_state:
# evaluate the successor states using scoreEvaluation heuristic
element_scored = [(admissibleHeuristic(next_state), action)]
# Increase the level for the child
parent_tree_level = astar_tree.goto(astar_child_state)
if parent_tree_level:
astar_tree_level = parent_tree_level.treeLevel + 1
else:
astar_tree_level += 1
# create tree for the finding the data
astar_tree.elementName = next_state
astar_tree.elementParent = astar_child_state
astar_tree.elementScore = element_scored
astar_tree.elementPath.append(astar_child_state)
astar_tree.treeLevel = astar_tree_level
astar_object = astar_tree.add()
# If the state exists then add that to the queue
astar_queue.append(astar_object)
else:
# Update the value leaf into the queue
astar_leaf_state = astar_tree.goto(astar_child_state)
astar_leaf_queue.append(astar_leaf_state)
You can add/remove any elements from the object, but make the structure intect.
© 2022 - 2025 — McMap. All rights reserved.
n-ary
tree can be represented by binary tree. – Gruchot