I want to use minimax search (with alpha-beta pruning), or rather negamax search, to make a computer program play a card game.
The card game actually consists of 4 players. So in order to be able to use minimax etc., I simplify the game to "me" against the "others". After each "move", you can objectively read the current state's evaluation from the game itself. When all 4 players have placed the card, the highest wins them all - and the cards' values count.
As you don't know how the distribution of cards between the other 3 players is exactly, I thought you must simulate all possible distributions ("worlds") with the cards that are not yours. You have 12 cards, the other 3 players have 36 cards in total.
So my approach is this algorithm, where player
is a number between 1 and 3 symbolizing the three computer players that the program might need to find moves for. And -player
stands for the opponents, namely all the other three players together.
private Card computerPickCard(GameState state, ArrayList<Card> cards) {
int bestScore = Integer.MIN_VALUE;
Card bestMove = null;
int nCards = cards.size();
for (int i = 0; i < nCards; i++) {
if (state.moveIsLegal(cards.get(i))) { // if you are allowed to place this card
int score;
GameState futureState = state.testMove(cards.get(i)); // a move is the placing of a card (which returns a new game state)
score = negamaxSearch(-state.getPlayersTurn(), futureState, 1, Integer.MIN_VALUE, Integer.MAX_VALUE);
if (score > bestScore) {
bestScore = score;
bestMove = cards.get(i);
}
}
}
// now bestMove is the card to place
}
private int negamaxSearch(int player, GameState state, int depthLeft, int alpha, int beta) {
ArrayList<Card> cards;
if (player >= 1 && player <= 3) {
cards = state.getCards(player);
}
else {
if (player == -1) {
cards = state.getCards(0);
cards.addAll(state.getCards(2));
cards.addAll(state.getCards(3));
}
else if (player == -2) {
cards = state.getCards(0);
cards.addAll(state.getCards(1));
cards.addAll(state.getCards(3));
}
else {
cards = state.getCards(0);
cards.addAll(state.getCards(1));
cards.addAll(state.getCards(2));
}
}
if (depthLeft <= 0 || state.isEnd()) { // end of recursion as the game is finished or max depth is reached
if (player >= 1 && player <= 3) {
return state.getCurrentPoints(player); // player's points as a positive value (for self)
}
else {
return -state.getCurrentPoints(-player); // player's points as a negative value (for others)
}
}
else {
int score;
int nCards = cards.size();
if (player > 0) { // make one move (it's player's turn)
for (int i = 0; i < nCards; i++) {
GameState futureState = state.testMove(cards.get(i));
if (futureState != null) { // wenn Zug gültig ist
score = negamaxSuche(-player, futureState, depthLeft-1, -beta, -alpha);
if (score >= beta) {
return score;
}
if (score > alpha) {
alpha = score; // alpha acts like max
}
}
}
return alpha;
}
else { // make three moves (it's the others' turn)
for (int i = 0; i < nCards; i++) {
GameState futureState = state.testMove(cards.get(i));
if (futureState != null) { // if move is valid
for (int k = 0; k < nCards; k++) {
if (k != i) {
GameState futureStateLevel2 = futureState.testMove(cards.get(k));
if (futureStateLevel2 != null) { // if move is valid
for (int m = 0; m < nCards; m++) {
if (m != i && m != k) {
GameState futureStateLevel3 = futureStateLevel2.testMove(cards.get(m));
if (futureStateLevel3 != null) { // if move is valid
score = negamaxSuche(-player, futureStateLevel3, depthLeft-1, -beta, -alpha);
if (score >= beta) {
return score;
}
if (score > alpha) {
alpha = score; // alpha acts like max
}
}
}
}
}
}
}
}
}
return alpha;
}
}
}
This seems to work fine, but for a depth of 1 (depthLeft=1
), the program already needs to calculate 50,000 moves (placed cards) on average. This is too much, of course!
So my questions are:
- Is the implementation correct at all? Can you simulate a game like this? Regarding the imperfect information, especially?
- How can you improve the algorithm in speed and work load?
- Can I, for example, reduce the set of possible moves to a random set of 50% to improve speed, while keeping good results?
- I found UCT algorithm to be a good solution (maybe). Do you know this algorithm? Can you help me implementing it?