Offline evaluation of both notation is same in theoretical machine
(Eager evaluation strategy)Evaluating with only one stack(without putting operator in stack)
It can be done by evaluating Prefix-notation right-to-left
.
- 7 + 2 3
# evaluate + 2 3
- 7 5
# evaluate - 7 5
2
It is same as evaluating Postfix-notation left-to-right
.
7 2 3 + -
# put 7 on stack
7 2 3 + -
# evaluate 2 3 +
7 5 -
# evaluate 7 5 -
2
(Optimized short-circuit strategy) Evaluating with two stacks(one for operator and one for operand)
It can be done by evaluating Prefix-notation left-to-right
.
|| 1 < 2 3
# put || in instruction stack, 1 in operand stack or keep the pair in stack
instruction-stack: or
operand-stack: 1
< 2 3
# push < 2 3 in stack
instruction-stack: or, less_than
operand-stack: 1, 2, 3
# evaluate < 2 3 as 1
instruction-stack: or
operand-stack: 1, 1
# evaluate || 1 1 as 1
operand-stack:1
Notice that we can do short-circuit optimization for the boolean
expression here easily(compared to previous evaluation sequence).
|| 1 < 2 3
# put || in instruction stack, 1 in operand stack or keep the pair in stack
instruction-stack: or
operand-stack: 1
< 2 3
# Is it possible to evaluate `|| 1` without evaluating the rest ? Yes !!
# skip < 2 3 and put place-holder 0
instruction-stack: or
operand-stack: 1 0
# evaluate || 1 0 as 1
operand-stack: 1
It is same as evaluating Postfix-notation right-to-left
.
(Optimized short-circuit strategy) Evaluating with one stack that takes a tuple (same as above)
It can be done by evaluating Prefix-notation left-to-right
.
|| 1 < 2 3
# put || 1 in tuple-stack
stack tuple[or,1,unknown]
< 2 3
# We do not need to compute < 2 3
stack tuple[or,1,unknown]
# evaluate || 1 unknown as 1
1
It is same as evaluating Postfix-notation right-to-left
.
Online evaluation in a calculator while human entering data in left-to-right
When putting numbers in a calculator, the Postfix-notation 2 3 +
can be evaluated instantly without any knowledge of the symbol human is going to put. It is opposite of Prefix notation because when we have - 7 +
we have nothing to do, not until we get something like - 7 + 2 3
.
Online evaluation in a calculator while human entering data in right-to-left
Now the Prefix-notation can evaluate + 2 3
instantly, while the Postfix-notation waits for further input when it has 3 + -
.
Please refer to @AshleyF note that the Arabic-language writes from right-to-left in contrast to English-language that writes from left-to-write !
I guess little-endian and big-endian is something related to this prefix/postfix notation.
One final comment, Reverse-Polish notation is strongly supported by Dijkstra (he is strong opponent of short-circuit optimization and regarded as the inventor of Reverse-Polish notation). It is your choice to support his opinion or not(I do not).