I timed the methods with the following variations in C++ for the value a
being a size_t
type (inlining improves performance but does not change relative ordering).
Try 1: Multiply until find number.
size_t try1( size_t a )
{
size_t scalar = 1ul;
while( scalar * 10 < a ) scalar *= 10;
return scalar;
}
Try 2: Multiway if (could also be programmed using a lookup table).
size_t try2( size_t a )
{
return ( a < 10ul ? 1ul :
( a < 100ul ? 10ul :
( a < 1000ul ? 100ul :
( a < 10000ul ? 1000ul :
( a < 100000ul ? 10000ul :
( a < 1000000ul ? 100000ul :
( a < 10000000ul ? 1000000ul :
( a < 100000000ul ? 10000000ul :
( a < 1000000000ul ? 100000000ul :
( a < 10000000000ul ? 1000000000ul :
( a < 100000000000ul ? 10000000000ul :
( a < 1000000000000ul ? 100000000000ul :
( a < 10000000000000ul ? 1000000000000ul :
( a < 100000000000000ul ? 10000000000000ul :
( a < 1000000000000000ul ? 100000000000000ul :
( a < 10000000000000000ul ? 1000000000000000ul :
( a < 100000000000000000ul ? 10000000000000000ul :
( a < 1000000000000000000ul ? 100000000000000000ul :
( a < 10000000000000000000ul ? 1000000000000000000ul :
10000000000000000000ul )))))))))))))))))));
}
Try 3: Modified from findPow10 of @Saaed Amiri, which uses squaring to more rapidly find very large powers than Try 1.
size_t try3( size_t a )
{
if (a == 0)
return 0;
size_t i, j = 1;
size_t prev = 1;
while( j != 100 )
{
i = prev;
j = 10;
while (i <= a)
{
prev = i;
i *= j;
j *= j;
}
}
return prev;
}
Try 4: Lookup table indexed using count leading zeros instruction as per @Ira Baxter.
static const std::array<size_t,64> ltable2{
1ul, 1ul, 1ul, 1ul, 1ul, 10ul, 10ul, 10ul,
100ul, 100ul, 100ul, 1000ul, 1000ul, 1000ul,
1000ul, 10000ul, 10000ul, 10000ul, 100000ul,
100000ul, 100000ul, 1000000ul, 1000000ul,
1000000ul, 1000000ul, 10000000ul, 10000000ul,
10000000ul, 100000000ul, 100000000ul,
100000000ul, 1000000000ul, 1000000000ul,
1000000000ul, 1000000000ul, 10000000000ul,
10000000000ul, 10000000000ul, 100000000000ul,
100000000000ul, 100000000000ul, 1000000000000ul,
1000000000000ul, 1000000000000ul, 1000000000000ul,
10000000000000ul, 10000000000000ul, 10000000000000ul,
100000000000000ul, 100000000000000ul, 100000000000000ul,
1000000000000000ul, 1000000000000000ul, 1000000000000000ul,
1000000000000000ul, 10000000000000000ul, 10000000000000000ul,
10000000000000000ul, 100000000000000000ul, 100000000000000000ul,
100000000000000000ul, 100000000000000000ul, 1000000000000000000ul,
1000000000000000000ul };
size_t try4( size_t a )
{
if( a == 0 ) return 0;
size_t scalar = ltable2[ 64 - __builtin_clzl(a) ];
return (scalar * 10 > a ? scalar : scalar * 10 );
}
Timing is as follows (gcc 4.8)
for( size_t i = 0; i != 1000000000; ++i) try1(i) 6.6
for( size_t i = 0; i != 1000000000; ++i) try2(i) 0.3
for( size_t i = 0; i != 1000000000; ++i) try3(i) 6.5
for( size_t i = 0; i != 1000000000; ++i) try4(i) 0.3
for( size_t i = 0; i != 1000000000; ++i) pow(10,size_t(log10((double)i)))
98.1
The lookup/multiway-if beats everything in C++, but requires we know integers are a finite size. try3
is slower than try1
in this test for smaller values of the loop end value, for large numbers try3
beats try1
. In python things are made difficult because integers are not limited so I would combine try2
with try3
to quickly process numbers up to a fixed limit then handle the possibly very large numbers.
In python I think lookup using a list comprehension is probably faster than a multiway-if.
# where we previously define lookuptable = ( 1, 10, 100, ..... )
scalar = [i for i in lookuptable if i < a][-1]
10**(int(math.log10(987654321987654321)))
, which is actually rather impressive. – Urbaix
. You'll probably want to profile a hybrid approach. – Rayfordraylex
is an integer, but I guess it shouldn't change that much (could cast a floatx
in an integral value and vice versa). – Wistful