I'm using Python in an attempt to analyse a large chunk of empiric measurements. In essence, I've two functions transforming the empiric data which also takes 3 'count' parameters - and returns a sequence of floats in each configuration. I'm expecting (hoping) to see some interesting patterns emerge when appropriate parameters are selected. I anticipate that the patterns might be relative between sequences returned for each function - and/or relate to patterns of some kind in the parameters. In case it's relevant, the 3 'count' parameters roughly correspond to:
- A 'window size' on the underlying data over which summary statistics are calculated
- A number of consecutive windows used to compute a single summary statistic (i.e. the trade-off between greater spatial or greater temporal accuracy)
- An 'minimum age' - an offset into history of the underlying data.
The summary statistics (which generate the resulting sequences of floats for each parameter configuration) are non-trivial but will be independently sensitive to all three parameters.
I'm interested in visualisation techniques - suited to RAD/ad-hoc enquiry that will help me experiment with this multi-dimensional data.
So far, I've tinkered with MatPlotLib but find being restricted generating two graphs of 2/3 dimensions in the style of batch processing makes investigation very tedious. Ideally, I'd find a tool that would allow me to visualise more than two dimensions... perhaps allowing me to switch real-time between dimensions in an interactive GUI.
I'd really appreciate hints from any visualisation gurus as to suitable tools I should investigate - ideally to integrate with my existing Python functions - or in other languages. I'd especially like to hear any anecdotes of success with similar visualisation problems.
EDIT to add: One possible approach I'm considering is to use animation on 2 or 3D plots (to capture another dimension... leaving 1 or 2 for manual selection)... though I've found no good tools to help me achieve this, yet.