I am running a multi-class model(total 40 class in total) for 2000 epochs. The model is running fine till 828 epoch but at 829 epoch it is giving me an InvalidArgumentError (see the screenshot below)
Below is the code that I used to build my model.
n_cats = 40
input_bow = tf.keras.Input(shape=(40), name="bow")
hidden_1 = tf.keras.layers.Dense(200, activation="relu")(input_bow)
hidden_2 = tf.keras.layers.Dense(100, activation="relu")(hidden_1)
hidden_3 = tf.keras.layers.Dense(80, activation="relu")(hidden_2)
hidden_4 = tf.keras.layers.Dense(70, activation="relu")(hidden_3)
output = tf.keras.layers.Dense(n_cats, activation="sigmoid")(hidden_4)
model = tf.keras.Model(inputs=[input_bow], outputs=output)
METRICS = [
tf.keras.metrics.Accuracy(name="Accuracy"),
tf.keras.metrics.Precision(name="precision"),
tf.keras.metrics.Recall(name="recall"),
tf.keras.metrics.AUC(name="auc"),
tf.keras.metrics.BinaryAccuracy(name="binaryAcc")
]
checkpoint_cb = tf.keras.callbacks.ModelCheckpoint(
"my_keras_model.h5", save_best_only=True)
lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate=1e-2,
decay_steps=10000,
decay_rate=0.9)
adam_optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)
model.compile(loss="categorical_crossentropy",
optimizer="adam", metrics=METRICS)
training_history = model.fit(
(bow_train),
indus_cat_train,
epochs=2000,
batch_size=128,
callbacks=[checkpoint_cb],
validation_data=(bow_test, indus_cat_test))
Please help me to understand this behavior of TensorFlow. What is causing this error? I have read this and this but these do not seem to be a correct explanation in my case.