<<-
is most useful in conjunction with closures to maintain state. Here's a section from a recent paper of mine:
A closure is a function written by another function. Closures are
so-called because they enclose the environment of the parent
function, and can access all variables and parameters in that
function. This is useful because it allows us to have two levels of
parameters. One level of parameters (the parent) controls how the
function works. The other level (the child) does the work. The
following example shows how can use this idea to generate a family of
power functions. The parent function (power
) creates child functions
(square
and cube
) that actually do the hard work.
power <- function(exponent) {
function(x) x ^ exponent
}
square <- power(2)
square(2) # -> [1] 4
square(4) # -> [1] 16
cube <- power(3)
cube(2) # -> [1] 8
cube(4) # -> [1] 64
The ability to manage variables at two levels also makes it possible to maintain the state across function invocations by allowing a function to modify variables in the environment of its parent. The key to managing variables at different levels is the double arrow assignment operator <<-
. Unlike the usual single arrow assignment (<-
) that always works on the current level, the double arrow operator can modify variables in parent levels.
This makes it possible to maintain a counter that records how many times a function has been called, as the following example shows. Each time new_counter
is run, it creates an environment, initialises the counter i
in this environment, and then creates a new function.
new_counter <- function() {
i <- 0
function() {
# do something useful, then ...
i <<- i + 1
i
}
}
The new function is a closure, and its environment is the enclosing environment. When the closures counter_one
and counter_two
are run, each one modifies the counter in its enclosing environment and then returns the current count.
counter_one <- new_counter()
counter_two <- new_counter()
counter_one() # -> [1] 1
counter_one() # -> [1] 2
counter_two() # -> [1] 1
<<-
to preserve key variables generated inside a function to record in failure logs when the function fails. Can help to make the failure reproducible if the function used inputs (e.g. from external APIs) that wouldn't necessarily have been preserved otherwise due to the failure. – Clop