I am currently writing a C++ template expression library and comparing some instantiations with hand-written code at assembly level. The hand-written function is the following:
spinor multiply(vector const& a, vector const& b)
{
spinor result = {
a.at<1>() * b.at<1>() - a.at<2>() * b.at<2>()
- a.at<4>() * b.at<4>() - a.at<8>() * b.at<8>(),
a.at<1>() * b.at<2>() - a.at<2>() * b.at<1>(),
a.at<1>() * b.at<4>() - a.at<4>() * b.at<1>(),
a.at<1>() * b.at<8>() - a.at<8>() * b.at<1>(),
a.at<2>() * b.at<4>() - a.at<4>() * b.at<2>(),
a.at<2>() * b.at<8>() - a.at<8>() * b.at<2>(),
a.at<4>() * b.at<8>() - a.at<8>() * b.at<4>()
};
return result;
}
The vector
class is just a wrapper over four doubles which can be read by using the at<index>()
member function. Because of design decisions, the indices for the four components are 1, 2, 4, 8
which are accessed with at<index>()
instead of the usual 0, 1, 2, 3
.
The purpose of this function is to return the result of a multiplication of two vectors (in Minkowski-space). If you are familiar with Geometric Algebra, you will see the dot-product (first component of result
, symmetric under exchange of a
and b
) and wedge-product (rest of the components, antisymmetric under exchange of a
and b
). If you are not familiar with Geometric Algebra, just take this function as a prescription for multiplying vectors.
If I compile the function above with GCC 4.7 and look at the disassembly given by objdump -SC a.out
this gives me the following output:
400bc0: movsd 0x8(%rsi),%xmm6
400bc5: mov %rdi,%rax
400bc8: movsd (%rsi),%xmm8
400bcd: movsd 0x8(%rdx),%xmm5
400bd2: movapd %xmm6,%xmm9
400bd7: movsd (%rdx),%xmm7
400bdb: movapd %xmm8,%xmm0
400be0: mulsd %xmm5,%xmm9
400be5: movsd 0x10(%rsi),%xmm4
400bea: mulsd %xmm7,%xmm0
400bee: movsd 0x10(%rdx),%xmm1
400bf3: movsd 0x18(%rdx),%xmm3
400bf8: movsd 0x18(%rsi),%xmm2
400bfd: subsd %xmm9,%xmm0
400c02: movapd %xmm4,%xmm9
400c07: mulsd %xmm1,%xmm9
400c0c: subsd %xmm9,%xmm0
400c11: movapd %xmm3,%xmm9
400c16: mulsd %xmm2,%xmm9
400c1b: subsd %xmm9,%xmm0
400c20: movapd %xmm6,%xmm9
400c25: mulsd %xmm7,%xmm9
400c2a: movsd %xmm0,(%rdi)
400c2e: movapd %xmm5,%xmm0
400c32: mulsd %xmm8,%xmm0
400c37: subsd %xmm9,%xmm0
400c3c: movapd %xmm4,%xmm9
400c41: mulsd %xmm7,%xmm9
400c46: mulsd %xmm2,%xmm7
400c4a: movsd %xmm0,0x8(%rdi)
400c4f: movapd %xmm1,%xmm0
400c53: mulsd %xmm8,%xmm0
400c58: mulsd %xmm3,%xmm8
400c5d: subsd %xmm9,%xmm0
400c62: subsd %xmm7,%xmm8
400c67: movapd %xmm4,%xmm7
400c6b: mulsd %xmm5,%xmm7
400c6f: movsd %xmm0,0x10(%rdi)
400c74: mulsd %xmm2,%xmm5
400c78: movapd %xmm1,%xmm0
400c7c: mulsd %xmm6,%xmm0
400c80: movsd %xmm8,0x18(%rdi)
400c86: mulsd %xmm3,%xmm6
400c8a: mulsd %xmm2,%xmm1
400c8e: mulsd %xmm4,%xmm3
400c92: subsd %xmm7,%xmm0
400c96: subsd %xmm5,%xmm6
400c9a: subsd %xmm1,%xmm3
400c9e: movsd %xmm0,0x20(%rdi)
400ca3: movsd %xmm6,0x28(%rdi)
400ca8: movsd %xmm3,0x30(%rdi)
400cad: retq
400cae: nop
400caf: nop
This looks pretty good to me - the components of the first (%rsi
) and second (%rdx
) vectors are accessed only once and the actual computations are done only in registers. At the end, the result is written at the adress in the register %rdi
. Since this is the first argument register I think a return value optimization is employed here.
Compare this with following listing for the expression template version of the function above:
400cb0: mov (%rsi),%rdx
400cb3: mov 0x8(%rsi),%rax
400cb7: movsd 0x1f1(%rip),%xmm4 # 400eb0 <_IO_stdin_used+0x10>
400cbe:
400cbf: movsd 0x10(%rdx),%xmm3
400cc4: movsd 0x18(%rdx),%xmm0
400cc9: mulsd 0x10(%rax),%xmm3
400cce: xorpd %xmm4,%xmm0
400cd2: mulsd 0x18(%rax),%xmm0
400cd7: movsd 0x8(%rdx),%xmm2
400cdc: movsd (%rdx),%xmm1
400ce0: mulsd 0x8(%rax),%xmm2
400ce5: mulsd (%rax),%xmm1
400ce9: subsd %xmm3,%xmm0
400ced: subsd %xmm2,%xmm0
400cf1: addsd %xmm0,%xmm1
400cf5: movsd %xmm1,(%rdi)
400cf9: movsd (%rdx),%xmm0
400cfd: movsd 0x8(%rdx),%xmm1
400d02: mulsd 0x8(%rax),%xmm0
400d07: mulsd (%rax),%xmm1
400d0b: subsd %xmm1,%xmm0
400d0f: movsd %xmm0,0x8(%rdi)
400d14: movsd (%rdx),%xmm0
400d18: movsd 0x10(%rdx),%xmm1
400d1d: mulsd 0x10(%rax),%xmm0
400d22: mulsd (%rax),%xmm1
400d26: subsd %xmm1,%xmm0
400d2a: movsd %xmm0,0x10(%rdi)
400d2f: movsd 0x8(%rdx),%xmm0
400d34: movsd 0x10(%rdx),%xmm1
400d39: mulsd 0x10(%rax),%xmm0
400d3e: mulsd 0x8(%rax),%xmm1
400d43: subsd %xmm1,%xmm0
400d47: movsd %xmm0,0x18(%rdi)
400d4c: movsd (%rdx),%xmm0
400d50: movsd 0x18(%rdx),%xmm1
400d55: mulsd 0x18(%rax),%xmm0
400d5a: mulsd (%rax),%xmm1
400d5e: subsd %xmm1,%xmm0
400d62: movsd %xmm0,0x20(%rdi)
400d67: movsd 0x8(%rdx),%xmm0
400d6c: movsd 0x18(%rdx),%xmm1
400d71: mulsd 0x18(%rax),%xmm0
400d76: mulsd 0x8(%rax),%xmm1
400d7b: subsd %xmm1,%xmm0
400d7f: movsd %xmm0,0x28(%rdi)
400d84: movsd 0x10(%rdx),%xmm0
400d89: movsd 0x18(%rdx),%xmm1
400d8e: mulsd 0x18(%rax),%xmm0
400d93: mulsd 0x10(%rax),%xmm1
400d98: subsd %xmm1,%xmm0
400d9c: movsd %xmm0,0x30(%rdi)
400da1: retq
The signature of this function is
spinor<product<vector, vector>>(product<vector, vector> const&)
I hope you trust me that both version give the same result. The first two lines extract the first and second vector which are stored as references in product
. I wondered about the following things:
- What does
movsd 0x1f1(%rip),%xmm4
in combination withxorpd %xmm4,%xmm0
do? I already found out that this is called "RIP relative addressing", see http://www.x86-64.org/documentation/assembly.html - Why does GCC not make use of more registers, e.g. to cache
0x10(%rax)
which is read four times?
I also benchmarked both functions by generating 100000000 random vectors and taking the time both functions needed:
ET: 7.5 sec
HW: 6.8 sec
The hand-written function is about 10% faster. Does anyone have experience with expression templates and knows how to make them perform closer to their hand-written counterpart?
using namespace std;
things might become very confusing. – Thereintousing namespace std;
I don't care if you get issues (you should be more specific)... but I agree with the general idea about trying to avoid name clashes anyway. – Alysausing namespace std
;-) – Achieve