I think of type classes as the ability to add type safe metadata to a class.
So you first define a class to model the problem domain and then think of metadata to add to it. Things like Equals, Hashable, Viewable, etc. This creates a separation of the problem domain and the mechanics to use the class and opens up subclassing because the class is leaner.
Except for that, you can add type classes anywhere in the scope, not just where the class is defined and you can change implementations. For example, if I calculate a hash code for a Point class by using Point#hashCode, then I'm limited to that specific implementation which may not create a good distribution of values for the specific set of Points I have. But if I use Hashable[Point], then I may provide my own implementation.
[Updated with example]
As an example, here's a use case I had last week. In our product there are several cases of Maps containing containers as values. E.g., Map[Int, List[String]]
or Map[String, Set[Int]]
. Adding to these collections can be verbose:
map += key -> (value :: map.getOrElse(key, List()))
So I wanted to have a function that wraps this so I could write
map +++= key -> value
The main issue is that the collections don't all have the same methods for adding elements. Some have '+' while others ':+'. I also wanted to retain the efficiency of adding elements to a list, so I didn't want to use fold/map which create new collections.
The solution is to use type classes:
trait Addable[C, CC] {
def add(c: C, cc: CC) : CC
def empty: CC
}
object Addable {
implicit def listAddable[A] = new Addable[A, List[A]] {
def empty = Nil
def add(c: A, cc: List[A]) = c :: cc
}
implicit def addableAddable[A, Add](implicit cbf: CanBuildFrom[Add, A, Add]) = new Addable[A, Add] {
def empty = cbf().result
def add(c: A, cc: Add) = (cbf(cc) += c).result
}
}
Here I defined a type class Addable
that can add an element C to a collection CC. I have 2 default implementations: For Lists using ::
and for other collections, using the builder framework.
Then using this type class is:
class RichCollectionMap[A, C, B[_], M[X, Y] <: collection.Map[X, Y]](map: M[A, B[C]])(implicit adder: Addable[C, B[C]]) {
def updateSeq[That](a: A, c: C)(implicit cbf: CanBuildFrom[M[A, B[C]], (A, B[C]), That]): That = {
val pair = (a -> adder.add(c, map.getOrElse(a, adder.empty) ))
(map + pair).asInstanceOf[That]
}
def +++[That](t: (A, C))(implicit cbf: CanBuildFrom[M[A, B[C]], (A, B[C]), That]): That = updateSeq(t._1, t._2)(cbf)
}
implicit def toRichCollectionMap[A, C, B[_], M[X, Y] <: col
The special bit is using adder.add
to add the elements and adder.empty
to create new collections for new keys.
To compare, without type classes I would have had 3 options:
1. to write a method per collection type. E.g., addElementToSubList
and addElementToSet
etc. This creates a lot of boilerplate in the implementation and pollutes the namespace
2. to use reflection to determine if the sub collection is a List / Set. This is tricky as the map is empty to begin with (of course scala helps here also with Manifests)
3. to have poor-man's type class by requiring the user to supply the adder. So something like addToMap(map, key, value, adder)
, which is plain ugly