I'm trying to implement Tensorflow object detection API sample. I am following sentdex videos for getting started. The sample code runs perfectly, it also shows the images which are used for testing the results, but no boundaries around detected objects are shown. Just the plane image is displayed without any errors.
I'm using this code: This Github link.
This is my result after running the sample code.
another image without any detection.
What I'm missing here? The code is included in above link and there is no error logs.
Results of box, score, classes, num in that order.
[[[ 0.74907303 0.14624023 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0.20880508 1. 1. ]
[ 0.74907303 0.14624023 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0.74907303 0.14624023 1. 1. ]
[ 0.74907303 0.14624023 1. 1. ]
[ 0.74907303 0.14624023 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0.74907303 0.14624023 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0.74907303 0.14624023 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0.74907303 0.14624023 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0.20934391 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0.20880508 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0.74907303 0.14624023 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0.74907303 0.14624023 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0.74907303 0.14624023 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0.74907303 0.14624023 1. 1. ]
[ 0.74907303 0.14624023 1. 1. ]
[ 0.74907303 0.14624023 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0.74907303 0.14624023 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0.74907303 0.14624023 1. 1. ]
[ 0.74907303 0.14624023 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0.74907303 0.14624023 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]]]
[[ 0.03587547 0.02224986 0.0186467 0.01096812 0.01003207 0.00654409
0.00633549 0.00534311 0.0049596 0.00410213 0.00362371 0.00339186
0.00308251 0.00303347 0.00293389 0.00277099 0.00269575 0.00266825
0.00263925 0.00263331 0.00258657 0.00240822 0.0022581 0.00186967
0.00184311 0.00180467 0.00177475 0.00173655 0.00172811 0.00171935
0.00171891 0.00170288 0.00163755 0.00162967 0.00160273 0.00156545
0.00153615 0.00140941 0.00132407 0.00131524 0.0013105 0.00129431
0.0012582 0.0012553 0.00122365 0.00119186 0.00115651 0.00115186
0.00112369 0.00107097 0.00105805 0.00104338 0.00102719 0.00102337
0.00100349 0.00097762 0.00096851 0.00092741 0.00088506 0.00087696
0.0008734 0.00084826 0.00084135 0.00083513 0.00083398 0.00082068
0.00080583 0.00078979 0.00078059 0.00077476 0.00075448 0.00074426
0.00074421 0.00070195 0.00068741 0.00068138 0.00067262 0.00067125
0.00067033 0.00066035 0.00064729 0.00064205 0.00061964 0.00061794
0.00060835 0.00060465 0.00059548 0.00059479 0.00059461 0.00059436
0.00059426 0.00059411 0.00059406 0.00059392 0.00059365 0.00059351
0.00059191 0.00058798 0.00058682 0.00058148]]
[[ 1. 1. 18. 32. 62. 60. 63. 67. 61. 49. 31. 84. 50. 54.
15. 44. 44. 49. 31. 56. 88. 28. 88. 52. 17. 32. 38. 75.
3. 33. 48. 59. 35. 57. 47. 51. 19. 27. 72. 4. 84. 6.
55. 20. 58. 65. 61. 82. 42. 34. 40. 21. 43. 64. 39. 62.
36. 22. 79. 46. 16. 40. 41. 77. 16. 48. 78. 77. 89. 86.
27. 8. 87. 5. 25. 70. 80. 76. 75. 67. 65. 37. 2. 9.
73. 63. 29. 30. 69. 66. 68. 26. 71. 12. 45. 83. 13. 85.
74. 23.]]
[ 100.]
[[[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0.68494415 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0.68494415 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0.00784111 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0.68494415 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0.68494415 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0.68494415 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0.68494415 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0.68494415 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0.68494415 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0.68494415 1. 1. ]
[ 0. 0.68494415 1. 1. ]]]
[[ 0.01044297 0.0098214 0.00942165 0.00846471 0.00613666 0.00398615
0.00357754 0.0030054 0.00255861 0.00236574 0.00232631 0.00220291
0.00185227 0.0016354 0.0015979 0.00145072 0.00143661 0.00141369
0.00122685 0.00118978 0.00108457 0.00104251 0.00099215 0.00096401
0.0008708 0.00084773 0.00080484 0.00078507 0.00078378 0.00076876
0.00072774 0.00071732 0.00071348 0.00070812 0.00069253 0.0006762
0.00067269 0.00059905 0.00059367 0.000588 0.00056114 0.0005504
0.00051472 0.00051057 0.00050973 0.00048486 0.00047297 0.00046204
0.00044787 0.00043259 0.00042987 0.00042673 0.00041978 0.00040494
0.00040087 0.00039576 0.00039059 0.00037274 0.00036831 0.00036417
0.00036119 0.00034645 0.00034479 0.00034078 0.00033771 0.00033605
0.0003333 0.0003304 0.0003294 0.00032326 0.00031787 0.00031773
0.00031748 0.00031741 0.00031732 0.00031729 0.00031724 0.00031722
0.00031717 0.00031708 0.00031702 0.00031579 0.00030416 0.00030222
0.00029739 0.00029726 0.00028289 0.0002653 0.00026325 0.00024584
0.00024221 0.00024156 0.00023911 0.00023335 0.00021619 0.0002001
0.00019127 0.00018342 0.00017273 0.00015509]]
[[ 38. 1. 1. 16. 25. 38. 64. 24. 49. 56. 20. 3. 28. 2.
48. 19. 21. 62. 50. 6. 8. 7. 67. 18. 35. 53. 39. 55.
15. 57. 72. 52. 10. 5. 42. 43. 76. 22. 82. 4. 61. 23.
17. 16. 87. 62. 51. 60. 36. 58. 59. 33. 31. 54. 70. 11.
40. 79. 31. 9. 41. 77. 80. 34. 90. 89. 73. 13. 84. 32.
63. 29. 30. 69. 66. 68. 26. 71. 12. 45. 83. 14. 44. 78.
85. 46. 47. 19. 65. 74. 37. 27. 63. 88. 28. 81. 86. 75.
27. 18.]]
[ 100.]
EDIT: As per suggested answers, it is working when we use faster_rcnn_resnet101_coco_2017_11_08
model. But it is more accurate and that's why slower. I want this application with high speed because I'm going to use it in real time (on webcam) object detection. So I need to use faster model (ssd_mobilenet_v1_coco_2017_11_08
)
MODEL_NAME= 'faster_rcnn_resnet101_coco_2017_11_08'
it does give some result. As far as I understand @Jack.Liu is correct and the scores given by the default model are way too low to pas the 0.5 threshold. – Uterine