Nothing is being detected in Tensorflow Object detection API
Asked Answered
Y

5

12

I'm trying to implement Tensorflow object detection API sample. I am following sentdex videos for getting started. The sample code runs perfectly, it also shows the images which are used for testing the results, but no boundaries around detected objects are shown. Just the plane image is displayed without any errors.

I'm using this code: This Github link.

This is my result after running the sample code.

enter image description here

another image without any detection.

enter image description here

What I'm missing here? The code is included in above link and there is no error logs.

Results of box, score, classes, num in that order.

  [[[ 0.74907303  0.14624023  1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.20880508  1.          1.        ]
  [ 0.74907303  0.14624023  1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.74907303  0.14624023  1.          1.        ]
  [ 0.74907303  0.14624023  1.          1.        ]
  [ 0.74907303  0.14624023  1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.74907303  0.14624023  1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.74907303  0.14624023  1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.74907303  0.14624023  1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.20934391  1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.20880508  1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.74907303  0.14624023  1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.74907303  0.14624023  1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.74907303  0.14624023  1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.74907303  0.14624023  1.          1.        ]
  [ 0.74907303  0.14624023  1.          1.        ]
  [ 0.74907303  0.14624023  1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.74907303  0.14624023  1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.74907303  0.14624023  1.          1.        ]
  [ 0.74907303  0.14624023  1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.74907303  0.14624023  1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]]]
[[ 0.03587547  0.02224986  0.0186467   0.01096812  0.01003207  0.00654409
   0.00633549  0.00534311  0.0049596   0.00410213  0.00362371  0.00339186
   0.00308251  0.00303347  0.00293389  0.00277099  0.00269575  0.00266825
   0.00263925  0.00263331  0.00258657  0.00240822  0.0022581   0.00186967
   0.00184311  0.00180467  0.00177475  0.00173655  0.00172811  0.00171935
   0.00171891  0.00170288  0.00163755  0.00162967  0.00160273  0.00156545
   0.00153615  0.00140941  0.00132407  0.00131524  0.0013105   0.00129431
   0.0012582   0.0012553   0.00122365  0.00119186  0.00115651  0.00115186
   0.00112369  0.00107097  0.00105805  0.00104338  0.00102719  0.00102337
   0.00100349  0.00097762  0.00096851  0.00092741  0.00088506  0.00087696
   0.0008734   0.00084826  0.00084135  0.00083513  0.00083398  0.00082068
   0.00080583  0.00078979  0.00078059  0.00077476  0.00075448  0.00074426
   0.00074421  0.00070195  0.00068741  0.00068138  0.00067262  0.00067125
   0.00067033  0.00066035  0.00064729  0.00064205  0.00061964  0.00061794
   0.00060835  0.00060465  0.00059548  0.00059479  0.00059461  0.00059436
   0.00059426  0.00059411  0.00059406  0.00059392  0.00059365  0.00059351
   0.00059191  0.00058798  0.00058682  0.00058148]]
[[  1.   1.  18.  32.  62.  60.  63.  67.  61.  49.  31.  84.  50.  54.
   15.  44.  44.  49.  31.  56.  88.  28.  88.  52.  17.  32.  38.  75.
    3.  33.  48.  59.  35.  57.  47.  51.  19.  27.  72.   4.  84.   6.
   55.  20.  58.  65.  61.  82.  42.  34.  40.  21.  43.  64.  39.  62.
   36.  22.  79.  46.  16.  40.  41.  77.  16.  48.  78.  77.  89.  86.
   27.   8.  87.   5.  25.  70.  80.  76.  75.  67.  65.  37.   2.   9.
   73.  63.  29.  30.  69.  66.  68.  26.  71.  12.  45.  83.  13.  85.
   74.  23.]]
[ 100.]
[[[ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.68494415  1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.68494415  1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.00784111  0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.68494415  1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.68494415  1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.68494415  1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.68494415  1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.68494415  1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.68494415  1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.          1.          1.        ]
  [ 0.          0.68494415  1.          1.        ]
  [ 0.          0.68494415  1.          1.        ]]]
[[ 0.01044297  0.0098214   0.00942165  0.00846471  0.00613666  0.00398615
   0.00357754  0.0030054   0.00255861  0.00236574  0.00232631  0.00220291
   0.00185227  0.0016354   0.0015979   0.00145072  0.00143661  0.00141369
   0.00122685  0.00118978  0.00108457  0.00104251  0.00099215  0.00096401
   0.0008708   0.00084773  0.00080484  0.00078507  0.00078378  0.00076876
   0.00072774  0.00071732  0.00071348  0.00070812  0.00069253  0.0006762
   0.00067269  0.00059905  0.00059367  0.000588    0.00056114  0.0005504
   0.00051472  0.00051057  0.00050973  0.00048486  0.00047297  0.00046204
   0.00044787  0.00043259  0.00042987  0.00042673  0.00041978  0.00040494
   0.00040087  0.00039576  0.00039059  0.00037274  0.00036831  0.00036417
   0.00036119  0.00034645  0.00034479  0.00034078  0.00033771  0.00033605
   0.0003333   0.0003304   0.0003294   0.00032326  0.00031787  0.00031773
   0.00031748  0.00031741  0.00031732  0.00031729  0.00031724  0.00031722
   0.00031717  0.00031708  0.00031702  0.00031579  0.00030416  0.00030222
   0.00029739  0.00029726  0.00028289  0.0002653   0.00026325  0.00024584
   0.00024221  0.00024156  0.00023911  0.00023335  0.00021619  0.0002001
   0.00019127  0.00018342  0.00017273  0.00015509]]
[[ 38.   1.   1.  16.  25.  38.  64.  24.  49.  56.  20.   3.  28.   2.
   48.  19.  21.  62.  50.   6.   8.   7.  67.  18.  35.  53.  39.  55.
   15.  57.  72.  52.  10.   5.  42.  43.  76.  22.  82.   4.  61.  23.
   17.  16.  87.  62.  51.  60.  36.  58.  59.  33.  31.  54.  70.  11.
   40.  79.  31.   9.  41.  77.  80.  34.  90.  89.  73.  13.  84.  32.
   63.  29.  30.  69.  66.  68.  26.  71.  12.  45.  83.  14.  44.  78.
   85.  46.  47.  19.  65.  74.  37.  27.  63.  88.  28.  81.  86.  75.
   27.  18.]]
[ 100.]

EDIT: As per suggested answers, it is working when we use faster_rcnn_resnet101_coco_2017_11_08 model. But it is more accurate and that's why slower. I want this application with high speed because I'm going to use it in real time (on webcam) object detection. So I need to use faster model (ssd_mobilenet_v1_coco_2017_11_08)

Yoho answered 11/11, 2017 at 11:27 Comment(12)
can you show us the values for (boxes, scores, classes, num); I want to understand if any objects are detected.Urbannal
How can I do that? @ZephroYoho
okay by printing the coordinates of box?Yoho
Yes ;) print(boxes), print(scores) ,...Urbannal
see the updates. @ZephroYoho
any ideas? @ZephroYoho
I'd like to add a me-too here. I tried exactly the same (under Linux) and have the same behavior.Uterine
@Uterine I've raised an issue on github. Let's hope for the solution: github.com/tensorflow/models/issues/2773Yoho
this is also related recent question: #47239092Yoho
I just did a test where I picked a different model when you pick a different pretrained model: MODEL_NAME= 'faster_rcnn_resnet101_coco_2017_11_08' it does give some result. As far as I understand @Jack.Liu is correct and the scores given by the default model are way too low to pas the 0.5 threshold.Uterine
Let me try that model then.Yoho
yes you are right. I also got some accurate results by using that model. But know the reason.Yoho
B
5

The problem is from the model: 'ssd_mobilenet_v1_coco_2017_11_08'

Solution: change to an differrent version 'ssd_mobilenet_v1_coco_11_06_2017' (this model type is the fastest one, change to other model types will make it slower and not the thing that you want)

Just change 1 line of code:

# What model to download.
MODEL_NAME = 'ssd_mobilenet_v1_coco_11_06_2017'

When I use your code, nothing is shown but when I replace it with my previous experiment model 'ssd_mobilenet_v1_coco_11_06_2017' it works fine

Biopsy answered 16/11, 2017 at 4:8 Comment(4)
same issue.. no objects detected.. i used this model for transfer learning: ssdlite_mobilenet_v2_coco_2018_05_09 os: windows 7 python: Python 3.5.2 |Anaconda custom (64-bit)| (default, Jul 5 2016, 11:41:13) [MSC v.1900 64 bit (AMD64)] on win32Deplane
Sorry, I don't catch what you mean. Do you mean when you apply above code the program still doesn't detect any objects?Biopsy
yes.. I used ssdlite_mobilenet_v2_coco_2018_05_09 and could manage to get the loss to 0.9 still no objects were detected.. now I have switched to ssd_mobilenet_v1_coca_2017_11_17 and it seems to be working..Deplane
i can confirm that changing the model from "2017_11_08", where nothing happens to "11_06_2017" works. I see the images with bounding boxes...Thanks, @TinLuu!Pebble
D
2

As a workaround change #MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_08' to MODEL_NAME = 'faster_rcnn_resnet101_coco_2017_11_08'.

Degradation answered 11/11, 2017 at 20:8 Comment(0)
S
1

You can use older 'ssd_mobilenet_v1 ... ' and run your program completely with boxes (I run it just now and it is correct). This is a link to this older version. Hope they correct newer version soon!

Schoenberg answered 14/11, 2017 at 9:49 Comment(0)
M
0

I used to have the same problem.

But a new model has been upload it recently 'ssd_mobilenet_v1_coco_2017_11_17'

I tried it and works like charm :)

Marijane answered 20/11, 2017 at 22:9 Comment(0)
P
-1

the function visualize_boxes_and_labels_on_image_array has the following code:

  for i in range(min(max_boxes_to_draw, boxes.shape[0])):
    if scores is None or scores[i] > min_score_thresh:

so, the score must be bigger than min_score_thresh (default 0.5), you can check whether there are some scores bigger than it.

Plural answered 11/11, 2017 at 16:52 Comment(4)
So why no score is bigger than 0.5 even if it is detecting correctly?Yoho
So if model 'ssd_mobilenet_v1_coco_2017_11_08' has the issue, then does it mean that training with it would also be problematic? I tried to train with it but it's stuck in first step: global_step/sec: 0. Its stuck for almost 9 hours. I am training on CPU.Chapatti
@Yoho You can use model "faster_rcnn_resnet101_coco_2017_11_08" instead of "ssd_mobilenet_v1_coco_2017_11_08"Plural
@Jack.Liu: It's not related to the threshold here, it's the model problem not to detect reliablyBiopsy

© 2022 - 2024 — McMap. All rights reserved.