Regarding your comment to @EOF 's answer, the "write your own" remark from @NominalAnimal seems simple enough here, even trivial, as follows.
Your original code above seems to have a max possible argument for exp() of a=(1+2*0x400)/0x2000...=4.55e-13 (that should really be 2*0x3FF, and I'm counting 13 zeroes after your 0x2000... which makes it 2x16^13). So that 4.55e-13 max argument is very, very small.
And then the trivial taylor expansion is exp(a)=1+a+(a^2)/2+(a^3)/6+... which already gives you all double's precision for such small arguments. Now, you'll have to discard the 1 part, as explained above, and then that just reduces to expm1(a)=a*(1.+a*(1.+a/3.)/2.) And that should go pretty darn quick! Just make sure a stays small. If it gets a little bigger, just add the next term, a^4/24 (you see how to do that?).
>>EDIT<<
I modified the OP's test program as follows to test a little more stuff (discussion follows code)
/* https://stackoverflow.com/questions/44346371/
i-do-not-want-correct-rounding-for-function-exp/44397261 */
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#define BASE 16 /*denominator will be (multiplier)xBASE^EXPON*/
#define EXPON 13
#define taylorm1(a) (a*(1.+a*(1.+a/3.)/2.)) /*expm1() approx for small args*/
int main (int argc, char *argv[]) {
int N = (argc>1?atoi(argv[1]):1e6),
multiplier = (argc>2?atoi(argv[2]):2),
isexp = (argc>3?atoi(argv[3]):1); /* flags to turn on/off exp() */
int isexpm1 = 1; /* and expm1() for timing tests*/
int i, n=0;
double denom = ((double)multiplier)*pow((double)BASE,(double)EXPON);
double a, c=0.0, cm1=0.0, tm1=0.0;
clock_t start = clock();
n=0; c=cm1=tm1=0.0;
/* --- to smooth random fluctuations, do the same type of computation
a large number of (N) times with different values --- */
for (i=0; i<N; i++) {
n++;
a = (double)(1 + 2*(rand()%0x400)) / denom; /* "a" has only a few
significant digits, and its last non-zero
digit is at (fixed-point) position 53. */
if ( isexp ) c += exp(a); /* turn this off to time expm1() alone */
if ( isexpm1 ) { /* you can turn this off to time exp() alone, */
cm1 += expm1(a); /* but difference is negligible */
tm1 += taylorm1(a); }
} /* --- end-of-for(i) --- */
int nticks = (int)(clock()-start);
printf ("N=%d, denom=%dx%d^%d, Clock time: %d (%.2f secs)\n",
n, multiplier,BASE,EXPON,
nticks, ((double)nticks)/((double)CLOCKS_PER_SEC));
printf ("\t c=%.20e,\n\t c-n=%e, cm1=%e, tm1=%e\n",
c,c-(double)n,cm1,tm1);
return 0;
} /* --- end-of-function main() --- */
Compile and run it as test to reproduce OP's 0x2000... scenario, or run it with (up to three) optional args test #trials multiplier timeexp where #trials defaults to the OP's 1000000, and multipler defaults to 2 for the OP's 2x16^13 (change it to 4, etc, for her other tests). For the last arg, timeexp, enter a 0 to do only the expm1() (and my unnecessary taylor-like) calculation. The point of that is to show that the bad-timing-cases displayed by the OP disappear with expm1(), which takes "no time at all" regardless of multiplier.
So default runs, test and test 1000000 4, produce (okay, I called the program rounding)...
bash-4.3$ ./rounding
N=1000000, denom=2x16^13, Clock time: 11155070 (11.16 secs)
c=1.00000000000000023283e+06,
c-n=2.328306e-10, cm1=1.136017e-07, tm1=1.136017e-07
bash-4.3$ ./rounding 1000000 4
N=1000000, denom=4x16^13, Clock time: 200211 (0.20 secs)
c=1.00000000000000011642e+06,
c-n=1.164153e-10, cm1=5.680083e-08, tm1=5.680083e-08
So the first thing you'll note is that the OP's c-n using exp() differs substantially from both cm1==tm1 using expm1() and my taylor approx. If you reduce N they come into agreement, as follows...
N=10, denom=2x16^13, Clock time: 941 (0.00 secs)
c=1.00000000000007140954e+01,
c-n=7.140954e-13, cm1=7.127632e-13, tm1=7.127632e-13
bash-4.3$ ./rounding 100
N=100, denom=2x16^13, Clock time: 5506 (0.01 secs)
c=1.00000000000010103918e+02,
c-n=1.010392e-11, cm1=1.008393e-11, tm1=1.008393e-11
bash-4.3$ ./rounding 1000
N=1000, denom=2x16^13, Clock time: 44196 (0.04 secs)
c=1.00000000000011345946e+03,
c-n=1.134595e-10, cm1=1.140730e-10, tm1=1.140730e-10
bash-4.3$ ./rounding 10000
N=10000, denom=2x16^13, Clock time: 227215 (0.23 secs)
c=1.00000000000002328306e+04,
c-n=2.328306e-10, cm1=1.131288e-09, tm1=1.131288e-09
bash-4.3$ ./rounding 100000
N=100000, denom=2x16^13, Clock time: 1206348 (1.21 secs)
c=1.00000000000000232831e+05,
c-n=2.328306e-10, cm1=1.133611e-08, tm1=1.133611e-08
And as far as timing of exp() versus expm1() is concerned, see for yourself...
bash-4.3$ ./rounding 1000000 2
N=1000000, denom=2x16^13, Clock time: 11168388 (11.17 secs)
c=1.00000000000000023283e+06,
c-n=2.328306e-10, cm1=1.136017e-07, tm1=1.136017e-07
bash-4.3$ ./rounding 1000000 2 0
N=1000000, denom=2x16^13, Clock time: 24064 (0.02 secs)
c=0.00000000000000000000e+00,
c-n=-1.000000e+06, cm1=1.136017e-07, tm1=1.136017e-07
Question: you'll note that once the exp() calculation reaches N=10000 trials, its sum remains constant regardless of larger N. Not sure why that would be happening.
>>__SECOND EDIT__<<
Okay, @EOF , "you made me look" with your "heirarchical accumulation" comment. And that indeed works to bring the exp() sum closer (much closer) to the (presumably correct) expm1() sum. The modified code's immediately below followed by a discussion. But one discussion note here: recall multiplier from above. That's gone, and in its same place is expon so that denominator is now 2^expon where the default is 53, matching OP's default (and I believe better matching how she was thinking about it). Okay, and here's the code...
/* https://stackoverflow.com/questions/44346371/
i-do-not-want-correct-rounding-for-function-exp/44397261 */
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#define BASE 2 /*denominator=2^EXPON, 2^53=2x16^13 default */
#define EXPON 53
#define taylorm1(a) (a*(1.+a*(1.+a/3.)/2.)) /*expm1() approx for small args*/
int main (int argc, char *argv[]) {
int N = (argc>1?atoi(argv[1]):1e6),
expon = (argc>2?atoi(argv[2]):EXPON),
isexp = (argc>3?atoi(argv[3]):1), /* flags to turn on/off exp() */
ncparts = (argc>4?atoi(argv[4]):1), /* #partial sums for c */
binsize = (argc>5?atoi(argv[5]):10);/* #doubles to sum in each bin */
int isexpm1 = 1; /* and expm1() for timing tests*/
int i, n=0;
double denom = pow((double)BASE,(double)expon);
double a, c=0.0, cm1=0.0, tm1=0.0;
double csums[10], cbins[10][65537]; /* c partial sums and heirarchy */
int nbins[10], ibin=0; /* start at lowest level */
clock_t start = clock();
n=0; c=cm1=tm1=0.0;
if ( ncparts > 65536 ) ncparts=65536; /* array size check */
if ( ncparts > 1 ) for(i=0;i<ncparts;i++) cbins[0][i]=0.0; /*init bin#0*/
/* --- to smooth random fluctuations, do the same type of computation
a large number of (N) times with different values --- */
for (i=0; i<N; i++) {
n++;
a = (double)(1 + 2*(rand()%0x400)) / denom; /* "a" has only a few
significant digits, and its last non-zero
digit is at (fixed-point) position 53. */
if ( isexp ) { /* turn this off to time expm1() alone */
double expa = exp(a); /* exp(a) */
c += expa; /* just accumulate in a single "bin" */
if ( ncparts > 1 ) cbins[0][n%ncparts] += expa; } /* accum in ncparts */
if ( isexpm1 ) { /* you can turn this off to time exp() alone, */
cm1 += expm1(a); /* but difference is negligible */
tm1 += taylorm1(a); }
} /* --- end-of-for(i) --- */
int nticks = (int)(clock()-start);
if ( ncparts > 1 ) { /* need to sum the partial-sum bins */
nbins[ibin=0] = ncparts; /* lowest-level has everything */
while ( nbins[ibin] > binsize ) { /* need another heirarchy level */
if ( ibin >= 9 ) break; /* no more bins */
ibin++; /* next available heirarchy bin level */
nbins[ibin] = (nbins[ibin-1]+(binsize-1))/binsize; /*#bins this level*/
for(i=0;i<nbins[ibin];i++) cbins[ibin][i]=0.0; /* init bins */
for(i=0;i<nbins[ibin-1];i++) {
cbins[ibin][(i+1)%nbins[ibin]] += cbins[ibin-1][i]; /*accum in nbins*/
csums[ibin-1] += cbins[ibin-1][i]; } /* accumulate in "one bin" */
} /* --- end-of-while(nprevbins>binsize) --- */
for(i=0;i<nbins[ibin];i++) csums[ibin] += cbins[ibin][i]; /*highest level*/
} /* --- end-of-if(ncparts>1) --- */
printf ("N=%d, denom=%d^%d, Clock time: %d (%.2f secs)\n", n, BASE,expon,
nticks, ((double)nticks)/((double)CLOCKS_PER_SEC));
printf ("\t c=%.20e,\n\t c-n=%e, cm1=%e, tm1=%e\n",
c,c-(double)n,cm1,tm1);
if ( ncparts > 1 ) { printf("\t binsize=%d...\n",binsize);
for (i=0;i<=ibin;i++) /* display heirarchy */
printf("\t level#%d: #bins=%5d, c-n=%e\n",
i,nbins[i],csums[i]-(double)n); }
return 0;
} /* --- end-of-function main() --- */
Okay, and now you can notice two additional command-line args following the old timeexp. They are ncparts for the initial number of bins into which the entire #trials will be distributed. So at the lowest level of the heirarchy, each bin should (modulo bugs:) have the sum of #trials/ncparts doubles. The argument after that is binsize, which will be the number of doubles summed in each bin at every successive level, until the last level has fewer (or equal) #bins as binsize. So here's an example dividing 1000000 trials into 50000 bins, meaning 20doubles/bin at the lowest level, and 5doubles/bin thereafter...
bash-4.3$ ./rounding 1000000 53 1 50000 5
N=1000000, denom=2^53, Clock time: 11129803 (11.13 secs)
c=1.00000000000000465661e+06,
c-n=4.656613e-09, cm1=1.136017e-07, tm1=1.136017e-07
binsize=5...
level#0: #bins=50000, c-n=4.656613e-09
level#1: #bins=10002, c-n=1.734588e-08
level#2: #bins= 2002, c-n=7.974450e-08
level#3: #bins= 402, c-n=1.059379e-07
level#4: #bins= 82, c-n=1.133885e-07
level#5: #bins= 18, c-n=1.136214e-07
level#6: #bins= 5, c-n=1.138542e-07
Note how the c-n for exp() converges pretty nicely towards the expm1() value. But note how it's best at level#5, and isn't converging uniformly at all. And note if you break the #trials into only 5000 initial bins, you get just as good a result,
bash-4.3$ ./rounding 1000000 53 1 5000 5
N=1000000, denom=2^53, Clock time: 11165924 (11.17 secs)
c=1.00000000000003527384e+06,
c-n=3.527384e-08, cm1=1.136017e-07, tm1=1.136017e-07
binsize=5...
level#0: #bins= 5000, c-n=3.527384e-08
level#1: #bins= 1002, c-n=1.164153e-07
level#2: #bins= 202, c-n=1.158332e-07
level#3: #bins= 42, c-n=1.136214e-07
level#4: #bins= 10, c-n=1.137378e-07
level#5: #bins= 4, c-n=1.136214e-07
In fact, playing with ncparts and binsize doesn't seem to show much sensitivity, and it's not always "more is better" (i.e., less for binsize) either. So I'm not sure exactly what's going on. Could be a bug (or two), or could be yet another question for @EOF ...???
>>EDIT -- example showing pair addition "binary tree" heirarchy<<
Example below added as per @EOF 's comment
(Note: re-copy preceding code. I had to edit nbins[ibin] calculation for each next level to nbins[ibin]=(nbins[ibin-1]+(binsize-1))/binsize; from nbins[ibin]=(nbins[ibin-1]+2*binsize)/binsize; which was "too conservative" to create ...16,8,4,2 sequence)
bash-4.3$ ./rounding 1024 53 1 512 2
N=1024, denom=2^53, Clock time: 36750 (0.04 secs)
c=1.02400000000011573320e+03,
c-n=1.157332e-10, cm1=1.164226e-10, tm1=1.164226e-10
binsize=2...
level#0: #bins= 512, c-n=1.159606e-10
level#1: #bins= 256, c-n=1.166427e-10
level#2: #bins= 128, c-n=1.166427e-10
level#3: #bins= 64, c-n=1.161879e-10
level#4: #bins= 32, c-n=1.166427e-10
level#5: #bins= 16, c-n=1.166427e-10
level#6: #bins= 8, c-n=1.166427e-10
level#7: #bins= 4, c-n=1.166427e-10
level#8: #bins= 2, c-n=1.164153e-10
>>EDIT -- to show @EOF's elegant solution in comment below<<
"Pair addition" can be elegantly accomplished recursively, as per @EOF's comment below, which I'm reproducing here. (Note case 0/1 at end-of-recursion to handle n even/odd.)
/* Quoting from EOF's comment...
What I (EOF) proposed is effectively a binary tree of additions:
a+b+c+d+e+f+g+h as ((a+b)+(c+d))+((e+f)+(g+h)).
Like this: Add adjacent pairs of elements, this produces
a new sequence of n/2 elements.
Recurse until only one element is left.
(Note that this will require n/2 elements of storage,
rather than a fixed number of bins like your implementation) */
double trecu(double *vals, double sum, int n) {
int midn = n/2;
switch (n) {
case 0: break;
case 1: sum += *vals; break;
default: sum = trecu(vals+midn, trecu(vals,sum,midn), n-midn); break; }
return(sum);
}
exp_approx
, using an existing implementation ofexp
as a starting point. – Mildapow(1.0 + x, 0.5)
rather than the obvious (and fast)sqrt(1.0 + x)
? – Carr0.5
is actually a parameter input by the user, which may take any value between 0 and 1. By the way, I realized that there was something strange going on when I found that the program speed crashed down completely when I input an paramter of0.5
rather than0.49
or0.51
… ;-) – Fallssqrt()
. – Carrexp()
of numbers very close to0
, floating-point numbers are problematic, since you get a number close to1
while all the precision is in the difference to one, so you lose most significant digits. It is more precise (and significantly faster in your testcase) to computeexp(x) - 1
through the C math library functionexpm1(x)
. If you really need theexp()
, it's still much faster to doexpm1(x) + 1
. A similar concern exists for computinglog(1 + x)
, for which there is the functionlog1p()
. – Carrexpm1
; indeed it solves the problem in this case, as the value ofexp (x) - 1
will not be at the (almost) middle between two consecutivedouble
numbers (thoughexp (x)
is…). So thank you for this suggestion! :-) However I would still be interested by an implementation ofexp
not looking for correct rounding: first because usingexp
makes the code easier to understand, but above all because I think that it would be good anyway to be certain that no peculiar value of your argument can crash the speed of your function ;-) – Fallsexpm1
suggestion answers well; and next, motivated by the first point but having its own interest, looking for an implementation ofexp
slightly less precise but with decent speed for all the value of its argument. – Fallsexp()
wasting your time with meaningless precision (after all,double
has plenty of bits anyway, right?), I see a library function desperately trying to protect the last handful of bits of precision from the ravages of your poorly chosen computation. You can of course stab it in the back and use a less accurate approximation, but don't be surprised if you end up with a final result that is barely in the right order of magnitude. – Carrlog(1 + x)
is approximatelyx
forabs(x)
much smaller than one. Now, ifx
ispow(2, -44)
,exp(log(1 + x))
is1 + x
, but of the significant bits ofx
you have at best53 - 44 == 9
bits of precision left. That's only512
different possible results for your inputs in that range. How many more bits can you spare for a faster approximation? – Carrexp
, which leads to making the sum of a handful of terms usingexp
with quite different arguments. Long story short, in this context I do not mind having a crappy computation ofexpm1 (x)
, provided my computation ofexp (x)
is fair. – Fallsexp
is not provided by GCC, but by your C standard library i.e.libc.so
andlibm.so
. However, read floating-point-gui.de – Hookah-ffast-math
help? – Zapateadodouble
values in the range aroundpow(2, -44)
to make memoization inapplicable in general). Either way, it feels like there might be a lot of fun optimizations that could have been discussed here if more of the context was given. I like discussing this kind of thing ;-). – Carr#define
ing theexp
function as something with only 1 ULP precision, but never very slow… – Fallsnoise1 = (1 - pow (1 - exp (x), 2 * H)) / (2 * H);
wherex
was a variable signed number of order of magnitude 16, andH
was a “Hurst parameter”, remaining the same during one program run, but likely to take any value between 0 and 1 (excluded). I was running my program for different values ofH
, and was struck to observe that the caseH = 0.25
was running some 10 times slower than all the other values… – Falls(-expm1(2 * H * log1p(-exp(x)))) / (2 * H)
will give very fast (and much more accurate) results for the line you posted ;-) – Carr