How to correctly implement custom iterators and const_iterators?
Asked Answered
F

10

308

I have a custom container class for which I'd like to write the iterator and const_iterator classes.

I never did this before and I failed to find an appropriate how-to. What are the guidelines regarding iterator creation, and what should I be aware of ?

I'd also like to avoid code duplication (I feel that const_iterator and iterator share many things; should one subclass the other ?).

Foot note: I'm pretty sure Boost has something to ease this but I can't use it here, for many stupid reasons.

Floriated answered 27/8, 2010 at 8:50 Comment(8)
From the set of related questions: Can 'iterator' type just subclass 'const_iterator'? How do you avoid code duplication when implementing const and non-const iterators?Slowmoving
Is the GoF Iterator Pattern being considered at all ?Guenna
@DumbCoder: In C++ it is often desirable to have iterators that are STL-compliant, because they will work nicely with all the existing containers and algorithms provided by the STL. Though the concept is similar, there are some differences to the pattern proposed by the GoF.Xiphoid
I've posted sample of custom iterator herePictograph
The complexity of these answers suggests that C++ is either a language unworthy of anything other than homework assignments for up-jumped undergrads, or the answers are overcomplicated and wrong. There must be an easier way in Cpp? Like CMake and Automake before it relative to make, raw C boiled out of a python prototype seems much easier than this.Landlord
I recently posted an article about this topic: C++ Senioreas - Iterators CustomizationSlavophile
@Landlord C++ is certainly worthy. The complexity of C++ and the learning curve is sort of a payment for its relatively unique attributes of extremely optimized abstractions. Some say zero-cost abstractions and in many cases this is exactly what happens in modern C++.Distinct
@PavelŠimerda haha Yeah I totally disagree with my comment at this point in general. I think I was thinking more along the lines of "there must be an easier way"Landlord
B
178
  • Choose type of iterator which fits your container: input, output, forward etc.
  • Use base iterator classes from standard library. For example, std::iterator with random_access_iterator_tag.These base classes define all type definitions required by STL and do other work.
  • To avoid code duplication iterator class should be a template class and be parametrized by "value type", "pointer type", "reference type" or all of them (depends on implementation). For example:

    // iterator class is parametrized by pointer type
    template <typename PointerType> class MyIterator {
        // iterator class definition goes here
    };
    
    typedef MyIterator<int*> iterator_type;
    typedef MyIterator<const int*> const_iterator_type;
    

    Notice iterator_type and const_iterator_type type definitions: they are types for your non-const and const iterators.

See Also: standard library reference

EDIT: std::iterator is deprecated since C++17. See a relating discussion here.

Brunhilde answered 27/8, 2010 at 9:11 Comment(8)
@Brunhilde Could you explain the distinction between value type, pointer type, and reference type?Cumbersome
@Potatoswatter: Have not downvoted this, but, hey, random_access_iterator is not in the standard and the answer does not handle the mutable to const conversion. You probably want to inherit from, e.g. std::iterator<random_access_iterator_tag, value_type, ... optional arguments ...> though.Smackdab
Yeah, I'm not quite sure how this works. If I have the method RefType operator*() { ... }, I'm one step closer -- but it doesn't help, because I still need RefType operator*() const { ... }.Armendariz
std::iterator has been deprecatedRhnegative
If this is deprecated, what is the proper "new" way of doing it instead?Enrollee
@Enrollee You just define the member types yourself (which is not that much extra work) - or create a similar template as std::iterator if you liked it.Wrongdoing
@SasQ, I am shamelessly self-promoting myself, but take a look at my answer, for me, it is by far the simplest way of implementing iterators in C++: https://mcmap.net/q/93766/-how-to-correctly-implement-custom-iterators-and-const_iteratorsCotterell
I am confused by this answer. You state to inherit from std::iterator but then don't appear to do this. Answer is also not particularly helpful since the class MyIterator is blank and there isn't much information about what it should contain. I'm not sure how to interpret this.Tisman
M
83

I'm going to show you how you can easily define iterators for your custom containers, but just in case I have created a c++11 library that allows you to easily create custom iterators with custom behavior for any type of container, contiguous or non-contiguous.

You can find it on Github

Here are the simple steps to creating and using custom iterators:

  1. Create your "custom iterator" class.
  2. Define typedefs in your "custom container" class.
    • e.g. typedef blRawIterator< Type > iterator;
    • e.g. typedef blRawIterator< const Type > const_iterator;
  3. Define "begin" and "end" functions
    • e.g. iterator begin(){return iterator(&m_data[0]);};
    • e.g. const_iterator cbegin()const{return const_iterator(&m_data[0]);};
  4. We're Done!!!

Finally, onto defining our custom iterator classes:

NOTE: When defining custom iterators, we derive from the standard iterator categories to let STL algorithms know the type of iterator we've made.

In this example, I define a random access iterator and a reverse random access iterator:

  1. //-------------------------------------------------------------------
    // Raw iterator with random access
    //-------------------------------------------------------------------
    template<typename blDataType>
    class blRawIterator
    {
    public:
    
        using iterator_category = std::random_access_iterator_tag;
        using value_type = blDataType;
        using difference_type = std::ptrdiff_t;
        using pointer = blDataType*;
        using reference = blDataType&;
    
    public:
    
        blRawIterator(blDataType* ptr = nullptr){m_ptr = ptr;}
        blRawIterator(const blRawIterator<blDataType>& rawIterator) = default;
        ~blRawIterator(){}
    
        blRawIterator<blDataType>&                  operator=(const blRawIterator<blDataType>& rawIterator) = default;
        blRawIterator<blDataType>&                  operator=(blDataType* ptr){m_ptr = ptr;return (*this);}
    
        operator                                    bool()const
        {
            if(m_ptr)
                return true;
            else
                return false;
        }
    
        bool                                        operator==(const blRawIterator<blDataType>& rawIterator)const{return (m_ptr == rawIterator.getConstPtr());}
        bool                                        operator!=(const blRawIterator<blDataType>& rawIterator)const{return (m_ptr != rawIterator.getConstPtr());}
    
        blRawIterator<blDataType>&                  operator+=(const difference_type& movement){m_ptr += movement;return (*this);}
        blRawIterator<blDataType>&                  operator-=(const difference_type& movement){m_ptr -= movement;return (*this);}
        blRawIterator<blDataType>&                  operator++(){++m_ptr;return (*this);}
        blRawIterator<blDataType>&                  operator--(){--m_ptr;return (*this);}
        blRawIterator<blDataType>                   operator++(int){auto temp(*this);++m_ptr;return temp;}
        blRawIterator<blDataType>                   operator--(int){auto temp(*this);--m_ptr;return temp;}
        blRawIterator<blDataType>                   operator+(const difference_type& movement){auto oldPtr = m_ptr;m_ptr+=movement;auto temp(*this);m_ptr = oldPtr;return temp;}
        blRawIterator<blDataType>                   operator-(const difference_type& movement){auto oldPtr = m_ptr;m_ptr-=movement;auto temp(*this);m_ptr = oldPtr;return temp;}
    
        difference_type                             operator-(const blRawIterator<blDataType>& rawIterator){return std::distance(rawIterator.getPtr(),this->getPtr());}
    
        blDataType&                                 operator*(){return *m_ptr;}
        const blDataType&                           operator*()const{return *m_ptr;}
        blDataType*                                 operator->(){return m_ptr;}
    
        blDataType*                                 getPtr()const{return m_ptr;}
        const blDataType*                           getConstPtr()const{return m_ptr;}
    
    protected:
    
        blDataType*                                 m_ptr;
    };
    //-------------------------------------------------------------------
    
  2. //-------------------------------------------------------------------
    // Raw reverse iterator with random access
    //-------------------------------------------------------------------
    template<typename blDataType>
    class blRawReverseIterator : public blRawIterator<blDataType>
    {
    public:
    
        blRawReverseIterator(blDataType* ptr = nullptr):blRawIterator<blDataType>(ptr){}
        blRawReverseIterator(const blRawIterator<blDataType>& rawIterator){this->m_ptr = rawIterator.getPtr();}
        blRawReverseIterator(const blRawReverseIterator<blDataType>& rawReverseIterator) = default;
        ~blRawReverseIterator(){}
    
        blRawReverseIterator<blDataType>&           operator=(const blRawReverseIterator<blDataType>& rawReverseIterator) = default;
        blRawReverseIterator<blDataType>&           operator=(const blRawIterator<blDataType>& rawIterator){this->m_ptr = rawIterator.getPtr();return (*this);}
        blRawReverseIterator<blDataType>&           operator=(blDataType* ptr){this->setPtr(ptr);return (*this);}
    
        blRawReverseIterator<blDataType>&           operator+=(const difference_type& movement){this->m_ptr -= movement;return (*this);}
        blRawReverseIterator<blDataType>&           operator-=(const difference_type& movement){this->m_ptr += movement;return (*this);}
        blRawReverseIterator<blDataType>&           operator++(){--this->m_ptr;return (*this);}
        blRawReverseIterator<blDataType>&           operator--(){++this->m_ptr;return (*this);}
        blRawReverseIterator<blDataType>            operator++(int){auto temp(*this);--this->m_ptr;return temp;}
        blRawReverseIterator<blDataType>            operator--(int){auto temp(*this);++this->m_ptr;return temp;}
        blRawReverseIterator<blDataType>            operator+(const int& movement){auto oldPtr = this->m_ptr;this->m_ptr-=movement;auto temp(*this);this->m_ptr = oldPtr;return temp;}
        blRawReverseIterator<blDataType>            operator-(const int& movement){auto oldPtr = this->m_ptr;this->m_ptr+=movement;auto temp(*this);this->m_ptr = oldPtr;return temp;}
    
        difference_type                             operator-(const blRawReverseIterator<blDataType>& rawReverseIterator){return std::distance(this->getPtr(),rawReverseIterator.getPtr());}
    
        blRawIterator<blDataType>                   base(){blRawIterator<blDataType> forwardIterator(this->m_ptr); ++forwardIterator; return forwardIterator;}
    };
    //-------------------------------------------------------------------
    

Now somewhere in your custom container class:

template<typename blDataType>
class blCustomContainer
{
public: // The typedefs

    typedef blRawIterator<blDataType>              iterator;
    typedef blRawIterator<const blDataType>        const_iterator;

    typedef blRawReverseIterator<blDataType>       reverse_iterator;
    typedef blRawReverseIterator<const blDataType> const_reverse_iterator;

                            .
                            .
                            .

public:  // The begin/end functions

    iterator                                       begin(){return iterator(&m_data[0]);}
    iterator                                       end(){return iterator(&m_data[m_size]);}

    const_iterator                                 cbegin(){return const_iterator(&m_data[0]);}
    const_iterator                                 cend(){return const_iterator(&m_data[m_size]);}

    reverse_iterator                               rbegin(){return reverse_iterator(&m_data[m_size - 1]);}
    reverse_iterator                               rend(){return reverse_iterator(&m_data[-1]);}

    const_reverse_iterator                         crbegin(){return const_reverse_iterator(&m_data[m_size - 1]);}
    const_reverse_iterator                         crend(){return const_reverse_iterator(&m_data[-1]);}

                            .
                            .
                            .
    // This is the pointer to the
    // beginning of the data
    // This allows the container
    // to either "view" data owned
    // by other containers or to
    // own its own data
    // You would implement a "create"
    // method for owning the data
    // and a "wrap" method for viewing
    // data owned by other containers

    blDataType*                                    m_data;
};
Millennial answered 2/4, 2014 at 4:35 Comment(13)
I think the operator+ and operator- may have the operations backwards. It looks like operator+ is subtracting movement from the pointer not adding and operator- is adding it. This seems backwardsJordison
It's for the reverse iterator, operator+ should go backwards and operator- should go forwardMillennial
Awesome. The accepted answer is too high level. This is awesome. Thank you Enzo.Crist
You need to edit your answer. Assuming m_data was allocated with m_size elements you get Undefined Behavior: m_data[m_size] is UB. You can simply fix it by replacing it with m_data+m_size. For reverse iterators, both m_data[-1] and m_data-1 are incorrect (UB). To fix reverse_iterators you will need to use the "pointers to next element trick".Seve
Arnaud, I just added the pointer member to the custom container class that better shows what I meant.Millennial
That explicit operator bool() is a really bad idea, please never do that. It makes while(it++) look reasonable, but do entirely the wrong thingWillis
In the case of raw pointers, the operator bool() is the equivalent of just checking if a pointer is null. Your "while(it++)" would not work if using a raw pointer since the pointer wouldn't know if it is pointing to a valid addressMillennial
I think std::iterator is deprecated in c++17 ?Anoint
@Trung0246, you are correct, i updated it accordinglyMillennial
The reverse iterator is work for nothing, since the standard library provides a reverse-iterator adapter. And you failed to make the iterator type assignable from the const iterator.Breeding
@TobySpeight, you are correct, I did not know about std::reverse_iterator when I wrote this example years agoMillennial
perhaps cbegin() and other const_iterator methods could/should be const?Nihon
in blRawIterator, operator+ and operator- should be const, using an implementation like `{ auto temp(*this); temp += distance; return temp; }.Explode
C
30

They often forget that iterator must convert to const_iterator but not the other way around. Here is a way to do that:

template<class T, class Tag = void>
class IntrusiveSlistIterator
   : public std::iterator<std::forward_iterator_tag, T>
{
    typedef SlistNode<Tag> Node;
    Node* node_;

public:
    IntrusiveSlistIterator(Node* node);

    T& operator*() const;
    T* operator->() const;

    IntrusiveSlistIterator& operator++();
    IntrusiveSlistIterator operator++(int);

    friend bool operator==(IntrusiveSlistIterator a, IntrusiveSlistIterator b);
    friend bool operator!=(IntrusiveSlistIterator a, IntrusiveSlistIterator b);

    // one way conversion: iterator -> const_iterator
    operator IntrusiveSlistIterator<T const, Tag>() const;
};

In the above notice how IntrusiveSlistIterator<T> converts to IntrusiveSlistIterator<T const>. If T is already const this conversion never gets used.

Conditional answered 27/8, 2010 at 9:45 Comment(9)
Actually, you can also do it the other way around by defining a copy constructor that is template, it won't compile if you try to cast the underlying type from const to non-const.Clubhouse
Won't you end up with an invalid IntrusiveSlistIterator<T const, void>::operator IntrusiveSlistIterator<T const, void>() const?Shimberg
Ah, it is valid, but Comeau gives a warning and I suspect a lot of others will as well. An enable_if might fix it, but…Shimberg
I did not bother with enable_if because the compiler disables it anyway, although some compilers give a warning (g++ being a good boy does not warn).Conditional
@Matthieu: If one goes with a template constructor, when converting const_iterator to iterator the compiler produces an error inside the constructor, making the user scratch his head in confusion and utter wtf. With the conversion operator I posted, the compiler just says that there is no suitable conversion from const_iterator to iterator, which, IMO, is more clear.Conditional
@Maxim: I hadn't thought about a better diagnostic, that would be interesting. It would be great if the warning could be fixed because I usually compile with warnings considered as errors, but I'll keep this in mind.Clubhouse
The conversion operator does not fix all the issues issue with member comparison operators. The compiler does not attempt to convert the object you're calling from, so if your first operand is non-const but your second is not, the operator is not defined.Nadbus
@MaximYegorushkin Take IntrusiveSlistIterator<T, void> a; and IntrusiveSlistIterator<T const, void> b; b==a is valid, since a gets converted to the const version, but a==b is not, since the operator requires a non const iterator and cannot convert to it. In the second case, conversion to a const iterator for a is not attempted because operator== is a member method.Nadbus
@Nadbus You are right, but this has nothing to do with the conversion operators. This is how member comparisons operators work. The fix is trivial - make the member comparison a non-member, see the updated version of the code.Conditional
C
26

Boost has something to help: the Boost.Iterator library.

More precisely this page: boost::iterator_adaptor.

What's very interesting is the Tutorial Example which shows a complete implementation, from scratch, for a custom type.

template <class Value>
class node_iter
  : public boost::iterator_adaptor<
        node_iter<Value>                // Derived
      , Value*                          // Base
      , boost::use_default              // Value
      , boost::forward_traversal_tag    // CategoryOrTraversal
    >
{
 private:
    struct enabler {};  // a private type avoids misuse

 public:
    node_iter()
      : node_iter::iterator_adaptor_(0) {}

    explicit node_iter(Value* p)
      : node_iter::iterator_adaptor_(p) {}

    // iterator convertible to const_iterator, not vice-versa
    template <class OtherValue>
    node_iter(
        node_iter<OtherValue> const& other
      , typename boost::enable_if<
            boost::is_convertible<OtherValue*,Value*>
          , enabler
        >::type = enabler()
    )
      : node_iter::iterator_adaptor_(other.base()) {}

 private:
    friend class boost::iterator_core_access;
    void increment() { this->base_reference() = this->base()->next(); }
};

The main point, as has been cited already, is to use a single template implementation and typedef it.

Clubhouse answered 27/8, 2010 at 9:47 Comment(3)
Can you explain the meaning of this comment? // a private type avoids misuse Accustom
@kevinarpe: enabler is never intended to be provider by the caller, so my guess is that they make it private to avoid people accidentally attempting to pass it. I don't think, off hand, that it could create any issue to actually pass it, since the protection lies in enable_if.Clubhouse
@orenrevenge: This is copy/pasted from the link, formatting included. Welcome to Boost code...Clubhouse
S
19

I don't know if Boost has anything that would help.

My preferred pattern is simple: take a template argument which is equal to value_type, either const qualified or not. If necessary, also a node type. Then, well, everything kind of falls into place.

Just remember to parameterize (template-ize) everything that needs to be, including the copy constructor and operator==. For the most part, the semantics of const will create correct behavior.

template< class ValueType, class NodeType >
struct my_iterator
 : std::iterator< std::bidirectional_iterator_tag, T > {
    ValueType &operator*() { return cur->payload; }

    template< class VT2, class NT2 >
    friend bool operator==
        ( my_iterator const &lhs, my_iterator< VT2, NT2 > const &rhs );

    // etc.

private:
    NodeType *cur;

    friend class my_container;
    my_iterator( NodeType * ); // private constructor for begin, end
};

typedef my_iterator< T, my_node< T > > iterator;
typedef my_iterator< T const, my_node< T > const > const_iterator;
Shimberg answered 27/8, 2010 at 9:7 Comment(4)
Note: it looks like your conversions iterator->const_iterator and back are broken.Conditional
@Maxim: Yes, I can't actually find any examples of using my technique :vP . I'm not sure what you mean the conversions are broken, since I simply didn't illustrate them, but there might be an issue accessing cur from the iterator of opposite constness. The solution that comes to mind is friend my_container::const_iterator; friend my_container::iterator;, but I don't think that's how I did it before… anyway this general outline works.Shimberg
* make that friend class in both cases.Shimberg
It's been some time, but I recall now that the conversions should be predicated (by SFINAE) on the well-formedness of the underlying member initializations. This follows the SCARY pattern (but this post predates that terminology).Shimberg
C
15

There are plenty of good answers but I created a template header I use that is quite concise and easy to use.

To add an iterator to your class it is only necessary to write a small class to represent the state of the iterator with 7 small functions, of which 2 are optional:

#include <iostream>
#include <vector>
#include "iterator_tpl.h"

struct myClass {
  std::vector<float> vec;

  // Add some sane typedefs for STL compliance:
  STL_TYPEDEFS(float);

  struct it_state {
    int pos;
    inline void begin(const myClass* ref) { pos = 0; }
    inline void next(const myClass* ref) { ++pos; }
    inline void end(const myClass* ref) { pos = ref->vec.size(); }
    inline float& get(myClass* ref) { return ref->vec[pos]; }
    inline bool equals(const it_state& s) const { return pos == s.pos; }

    // Optional to allow operator--() and reverse iterators:
    inline void prev(const myClass* ref) { --pos; }
    // Optional to allow `const_iterator`:
    inline const float& get(const myClass* ref) const { return ref->vec[pos]; }
  };
  // Declare typedef ... iterator;, begin() and end() functions:
  SETUP_ITERATORS(myClass, float&, it_state);
  // Declare typedef ... reverse_iterator;, rbegin() and rend() functions:
  SETUP_REVERSE_ITERATORS(myClass, float&, it_state);
};

Then you can use it as you would expect from an STL iterator:

int main() {
  myClass c1;
  c1.vec.push_back(1.0);
  c1.vec.push_back(2.0);
  c1.vec.push_back(3.0);

  std::cout << "iterator:" << std::endl;
  for (float& val : c1) {
    std::cout << val << " "; // 1.0 2.0 3.0
  }
  
  std::cout << "reverse iterator:" << std::endl;
  for (auto it = c1.rbegin(); it != c1.rend(); ++it) {
    std::cout << *it << " "; // 3.0 2.0 1.0
  }
}

I hope it helps.

Cotterell answered 6/6, 2017 at 2:13 Comment(0)
H
5

I came across this post and was surprised that a simple method is not really mentioned here. Using a pointer to the value like how std::iterator describes is obviously a very generic approach. But you might be able to get away with something much simpler. Of course this is a simplistic approach and might not always be sufficient, but in case it is, I am posting it for the next reader.

Most probably the underlying type in your class is an STL container which already has defined the iterators for you. If that is the case, you can simply use their defined iterators and don't really need to make your own.

Here is an example:

class Foo {

  std::vector<int>::iterator begin() { return data.begin(); }
  std::vector<int>::iterator end() { return data.end(); }

  std::vector<int>::const_iterator begin() const { return data.begin(); }
  std::vector<int>::const_iterator end() const { return data.end(); }


private:
  std::vector<int> data

};
Hali answered 31/3, 2021 at 20:27 Comment(2)
With this, you are breaking encapsulation principle of your Foo object, by allowing it underlying container to be modified through the iterator without really knowing it. Also, the value to return from the iterator might not be the one saved in the STL container: for example, you might want to provide only a portion of what is really saved internally, or make some transformation before to return it.Whitewood
Interesting. Had not thought about it from this aspect. Thank you. But all other solutions suffer from the same issue, don't they? Whatever the class Foo is, defining any non-const iterator provides unrestricted access to its stored data.Hali
E
5

i'm interested to know how correct this is, but seems to work as a roll-your-own iterator to internal data storage

template<typename T>
struct iterator_type
{
    using self_type             = iterator_type;
    using iterator_category     = std::random_access_iterator_tag;
    using difference_type       = std::ptrdiff_t;
    using value_type            = std::remove_cv_t<T>;
    using pointer               = T*;
    using reference             = T&;

    iterator_type( pointer ptr ) noexcept
        : _ptr{ ptr }
    {}

    reference operator*() noexcept { return *_ptr; }
    pointer operator->() noexcept { return _ptr; }

    self_type operator++() noexcept { ++_ptr; return *this; }
    self_type operator++(int) noexcept { self_type tmp = *this; ++_ptr; return tmp; }

    self_type operator--() noexcept { --_ptr; return *this; }
    self_type operator--(int) noexcept { self_type tmp = *this; --_ptr; return tmp; }

    bool operator==( const self_type &other ) const noexcept { return _ptr == other._ptr; }
    bool operator!=( const self_type &other ) const noexcept { return _ptr != other._ptr; }

private:
    pointer _ptr;
};


template<typename T>
using const_iterator_type = iterator_type<std::add_const_t<T>>;

Then i just add these to my class, and seems to work as expected.

template<typename T>
class Container
{
public:
    using iterator               = iterator_type<T>;
    using const_iterator         = const_iterator_type<T>;
    using reverse_iterator       = std::reverse_iterator<iterator>;
    using const_reverse_iterator = std::reverse_iterator<const_iterator>;

...

    iterator begin() { return _begin; }
    iterator end() { return _begin + _size; }

    const_iterator cbegin() const { return _begin; }
    const_iterator cend() const { return _begin + _size; }

    reverse_iterator rbegin() { return reverse_iterator(_begin + _size); }
    reverse_iterator rend() { return reverse_iterator(_begin); }

    const_reverse_iterator crbegin() const { return const_reverse_iterator(_begin + _size); }
    const_reverse_iterator crend() const { return const_reverse_iterator(_begin); }

private:
    T*         _begin;
    size_t     _size;
    size_t     _capacity;
};

the only thing is that to make it with the std::cbegin(), std::rcbegin(), std::cend() and std::rcend() functions I have to extend the std namespace:

namespace std
{
    template<typename T>
    typename Container<T>::const_iterator cbegin( Container<T> &c ) { return c.cbegin(); }

    template<typename T>
    typename Container<T>::const_iterator cend( Container<T> &c ) { return c.cend(); }

    template<typename T>
    typename Container<T>::const_reverse_iterator crbegin( Container<T> &c ) { return c.crbegin(); }

    template<typename T>
    typename Container<T>::const_reverse_iterator crend( Container<T> &c ) { return c.crend(); }
}
Energy answered 29/10, 2021 at 18:3 Comment(0)
M
0

Tested code. Custom vector with Custom iterator implementation

#include<iostream>
using namespace std;

// vector + iterator
class dviter{
    int index;
    int* data;
    public:
    dviter(int *values, int offset) : data(values), index(offset) {
    }
    int operator*() {
        return data[index];
    }
    bool operator != (const dviter& obj){
        return (this->index != obj.index);
    }
    dviter& operator++(){
        ++index;
        return *this;
    }

};
class dvector {
    int* data = nullptr;
    int capacity = 5;
    int index = 0;
    public:
    dvector(){
        data = new int[capacity];
    }
    void push(int val) {
        if(notFull()) {
            data[index] = val;
            ++index;
            return;
        }
            int *temp = new int(2 * capacity);
            for(int i = 0; i < index; i++){
                temp[i] = data[i];
            }
            capacity = 2 * capacity;
            delete [] data;
            data = nullptr;
            data = temp;
            push(val);
        
    }
    void pop() {
        if(notEmpty()) {
            --index;
            return;
        }
        cout << "nothing to pop "<< endl;
    }
    bool notEmpty() {
        return (index > 0) ? true : false;
    }
    bool notFull() {
        return (index < (capacity)) ? true : false;
    }
   
    void printoff() {
        for (int i = 0; i < index; i++) {
            cout << data[i] << "  ";
        }
        cout <<endl;
    }
 
    int currentItem(int index) {
        return data[index];
    }

    dviter* begin() {
        return new dviter(data, 0);
    }
    dviter* end() {
        return new dviter(data, index);
    }
};



int main() {
    dvector p;
    p.push(1);
    p.push(2);
    p.push(3);

    auto* it1 = p.begin();
    auto* it2 = p.end();
    while( (*it1)!=  (*it2)) {
        cout <<  *(*it1) <<  endl;
        ++(*it1);
    }
}
Murrelet answered 24/2, 2024 at 6:14 Comment(0)
W
-3

Check this below code, it works

#define MAX_BYTE_RANGE 255

template <typename T>
class string
{
public:
    typedef char *pointer;
    typedef const char *const_pointer;
    typedef __gnu_cxx::__normal_iterator<pointer, string> iterator;
    typedef __gnu_cxx::__normal_iterator<const_pointer, string> const_iterator;

    string() : length(0)
    {
    }
    size_t size() const
    {
        return length;
    }
    void operator=(const_pointer value)
    {
        if (value == nullptr)
            throw std::invalid_argument("value cannot be null");
        auto count = strlen(value);
        if (count > 0)
            _M_copy(value, count);
    }
    void operator=(const string &value)
    {
        if (value.length != 0)
            _M_copy(value.buf, value.length);
    }
    iterator begin()
    {
        return iterator(buf);
    }
    iterator end()
    {
        return iterator(buf + length);
    }
    const_iterator begin() const
    {
        return const_iterator(buf);
    }
    const_iterator end() const
    {
        return const_iterator(buf + length);
    }
    const_pointer c_str() const
    {
        return buf;
    }
    ~string()
    {
    }

private:
    unsigned char length;
    T buf[MAX_BYTE_RANGE];

    void _M_copy(const_pointer value, size_t count)
    {
        memcpy(buf, value, count);
        length = count;
    }
};
Wormseed answered 28/11, 2020 at 19:54 Comment(0)

© 2022 - 2025 — McMap. All rights reserved.