I am running OLS regression using pandas.stats.api.ols
using a groupby
with the following code:
from pandas.stats.api import ols
df=pd.read_csv(r'F:\file.csv')
result=df.groupby(['FID']).apply(lambda d: ols(y=d.loc[:, 'MEAN'], x=d.loc[:, ['Accum_Prcp', 'Accum_HDD']]))
for i in result:
x=pd.DataFrame({'FID':i.index, 'delete':i.values})
frame = pd.concat([x,DataFrame(x['delete'].tolist())], axis=1, join='outer')
del frame['delete']
print frame
but this returns the error:
AttributeError: 'OLS' object has no attribute 'index'
I have about 2,000 items in my group by and when I print each one out they look something like this:
-
------------------------Summary of Regression Analysis-------------------------
Formula: Y ~ <Accum_Prcp> + <Accum_HDD> + <intercept>
Number of Observations: 79
Number of Degrees of Freedom: 3
R-squared: 0.1242
Adj R-squared: 0.1012
Rmse: 0.1929
F-stat (2, 76): 5.3890, p-value: 0.0065
Degrees of Freedom: model 2, resid 76
-----------------------Summary of Estimated Coefficients------------------------
Variable Coef Std Err t-stat p-value CI 2.5% CI 97.5%
--------------------------------------------------------------------------------
Accum_Prcp 0.0009 0.0003 3.28 0.0016 0.0004 0.0015
Accum_HDD 0.0000 0.0000 1.98 0.0516 0.0000 0.0000
intercept 0.4750 0.0811 5.86 0.0000 0.3161 0.6340
---------------------------------End of Summary---------------------------------
I want to be able to export each one to a csv so that I can view them individually.
ols.summary()
is actually output as text, not as aDataFrame
. I've usually resorted to printing to one or more text files for storage. – Overtonefor i in result: i.to_csv(os.path.join(outpath, i +'.csv')
it returnsAttributeError: 'OLS' object has no attribute 'to_csv'
– MaxentiaOLS
routine are you using?statsmodels
? – Overtonepandas.stats.api
– Maxentia