I recently learned a bit about F-algebras: https://www.fpcomplete.com/user/bartosz/understanding-algebras. I wanted to lift this functionality to more advanced types (indexed and higher-kinded). Furthermore, I checked "Giving Haskell a Promotion" (http://research.microsoft.com/en-us/people/dimitris/fc-kind-poly.pdf), which was very helpful because it gave names to my own vague "inventions".
However, I cannot seem to create a unified approach that works for all shapes.
Algebras need some "carrier type", but the structure we're traversing expects a certain shape (itself, applied recursively), so I came up with a "Dummy" container that can carry any type, but is shaped as expected. I then use a type family to couple these.
This approach seems to work, leading to a fairly generic signature for my 'cata' function.
However, the other things I use (Mu, Algebra) still need separate versions for each shape, just for passing a bunch of type variables around. I was hoping something like PolyKinds could help (which I use successfully to shape the dummy type), but it seems it is only meant to work the other way around.
As IFunctor1 and IFunctor2 do not have extra variables, I tried to unify them by attaching (via type family) the index-preserving-function type, but this seems not allowed because of the existential quantification, so I'm left with multiple versions there too.
Is there any way to unify these 2 cases? Did I overlook some tricks, or is this just a limitation for now? Are there other things that can be simplified?
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE Rank2Types #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}
module Cata where
-- 'Fix' for indexed types (1 index)
newtype Mu1 f a = Roll1 { unRoll1 :: f (Mu1 f) a }
deriving instance Show (f (Mu1 f) a) => Show (Mu1 f a)
-- 'Fix' for indexed types (2 index)
newtype Mu2 f a b = Roll2 { unRoll2 :: f (Mu2 f) a b }
deriving instance Show (f (Mu2 f) a b) => Show (Mu2 f a b)
-- index-preserving function (1 index)
type s :-> t = forall i. s i -> t i
-- index-preserving function (2 index)
type s :--> t = forall i j. s i j -> t i j
-- indexed functor (1 index)
class IFunctor1 f where
imap1 :: (s :-> t) -> (f s :-> f t)
-- indexed functor (2 index)
class IFunctor2 f where
imap2 :: (s :--> t) -> (f s :--> f t)
-- dummy container type to store a solid result type
-- the shape should follow an indexed type
type family Dummy (x :: i -> k) :: * -> k
type Algebra1 f a = forall t. f ((Dummy f) a) t -> (Dummy f) a t
type Algebra2 f a = forall s t. f ((Dummy f) a) s t -> (Dummy f) a s t
cata1 :: IFunctor1 f => Algebra1 f a -> Mu1 f t -> (Dummy f) a t
cata1 alg = alg . imap1 (cata1 alg) . unRoll1
cata2 :: IFunctor2 f => Algebra2 f a -> Mu2 f s t -> (Dummy f) a s t
cata2 alg = alg . imap2 (cata2 alg) . unRoll2
And 2 example structures to work with:
ExprF1 seems like a normal useful thing, attaching an embedded type to an object language.
ExprF2 is contrived (extra argument which happens to be lifted (DataKinds) as well), just to find out if the "generic" cata2 is able to handle these shapes.
-- our indexed type, which we want to use in an F-algebra (1 index)
data ExprF1 f t where
ConstI1 :: Int -> ExprF1 f Int
ConstB1 :: Bool -> ExprF1 f Bool
Add1 :: f Int -> f Int -> ExprF1 f Int
Mul1 :: f Int -> f Int -> ExprF1 f Int
If1 :: f Bool -> f t -> f t -> ExprF1 f t
deriving instance (Show (f t), Show (f Bool)) => Show (ExprF1 f t)
-- our indexed type, which we want to use in an F-algebra (2 index)
data ExprF2 f s t where
ConstI2 :: Int -> ExprF2 f Int True
ConstB2 :: Bool -> ExprF2 f Bool True
Add2 :: f Int True -> f Int True -> ExprF2 f Int True
Mul2 :: f Int True -> f Int True -> ExprF2 f Int True
If2 :: f Bool True -> f t True -> f t True -> ExprF2 f t True
deriving instance (Show (f s t), Show (f Bool t)) => Show (ExprF2 f s t)
-- mapper for f-algebra (1 index)
instance IFunctor1 ExprF1 where
imap1 _ (ConstI1 x) = ConstI1 x
imap1 _ (ConstB1 x) = ConstB1 x
imap1 eval (x `Add1` y) = eval x `Add1` eval y
imap1 eval (x `Mul1` y) = eval x `Mul1` eval y
imap1 eval (If1 p t e) = If1 (eval p) (eval t) (eval e)
-- mapper for f-algebra (2 index)
instance IFunctor2 ExprF2 where
imap2 _ (ConstI2 x) = ConstI2 x
imap2 _ (ConstB2 x) = ConstB2 x
imap2 eval (x `Add2` y) = eval x `Add2` eval y
imap2 eval (x `Mul2` y) = eval x `Mul2` eval y
imap2 eval (If2 p t e) = If2 (eval p) (eval t) (eval e)
-- turned into a nested expression
type Expr1 = Mu1 ExprF1
-- turned into a nested expression
type Expr2 = Mu2 ExprF2
-- dummy containers
newtype X1 x y = X1 x deriving Show
newtype X2 x y z = X2 x deriving Show
type instance Dummy ExprF1 = X1
type instance Dummy ExprF2 = X2
-- a simple example agebra that evaluates the expression
-- turning bools into 0/1
alg1 :: Algebra1 ExprF1 Int
alg1 (ConstI1 x) = X1 x
alg1 (ConstB1 False) = X1 0
alg1 (ConstB1 True) = X1 1
alg1 ((X1 x) `Add1` (X1 y)) = X1 $ x + y
alg1 ((X1 x) `Mul1` (X1 y)) = X1 $ x * y
alg1 (If1 (X1 0) _ (X1 e)) = X1 e
alg1 (If1 _ (X1 t) _) = X1 t
alg2 :: Algebra2 ExprF2 Int
alg2 (ConstI2 x) = X2 x
alg2 (ConstB2 False) = X2 0
alg2 (ConstB2 True) = X2 1
alg2 ((X2 x) `Add2` (X2 y)) = X2 $ x + y
alg2 ((X2 x) `Mul2` (X2 y)) = X2 $ x * y
alg2 (If2 (X2 0) _ (X2 e)) = X2 e
alg2 (If2 _ (X2 t) _) = X2 t
-- simple helpers for construction
ci1 :: Int -> Expr1 Int
ci1 = Roll1 . ConstI1
cb1 :: Bool -> Expr1 Bool
cb1 = Roll1 . ConstB1
if1 :: Expr1 Bool -> Expr1 a -> Expr1 a -> Expr1 a
if1 p t e = Roll1 $ If1 p t e
add1 :: Expr1 Int -> Expr1 Int -> Expr1 Int
add1 x y = Roll1 $ Add1 x y
mul1 :: Expr1 Int -> Expr1 Int -> Expr1 Int
mul1 x y = Roll1 $ Mul1 x y
ci2 :: Int -> Expr2 Int True
ci2 = Roll2 . ConstI2
cb2 :: Bool -> Expr2 Bool True
cb2 = Roll2 . ConstB2
if2 :: Expr2 Bool True -> Expr2 a True-> Expr2 a True -> Expr2 a True
if2 p t e = Roll2 $ If2 p t e
add2 :: Expr2 Int True -> Expr2 Int True -> Expr2 Int True
add2 x y = Roll2 $ Add2 x y
mul2 :: Expr2 Int True -> Expr2 Int True -> Expr2 Int True
mul2 x y = Roll2 $ Mul2 x y
-- test case
test1 :: Expr1 Int
test1 = if1 (cb1 True)
(ci1 3 `mul1` ci1 4 `add1` ci1 5)
(ci1 2)
test2 :: Expr2 Int True
test2 = if2 (cb2 True)
(ci2 3 `mul2` ci2 4 `add2` ci2 5)
(ci2 2)
main :: IO ()
main = let (X1 x1) = cata1 alg1 test1
(X2 x2) = cata2 alg2 test2
in do print x1
print x2
Output:
17
17