Here's the stack
approach:
dat2a <- data.frame(dat[1:2], stack(dat[3:ncol(dat)]))
dat2a
# ID Time values ind
# 1 1 20 1 U1
# 2 2 20 2 U1
# 3 3 20 2 U1
# 4 1 20 2 U2
# 5 2 20 5 U2
# 6 3 20 5 U2
# 7 1 20 3 U3
# 8 2 20 9 U3
# 9 3 20 6 U3
# 10 1 20 5 U4
# 11 2 20 4 U4
# 12 3 20 4 U4
This is very similar to melt
from "reshape2":
library(reshape2)
dat2b <- melt(dat, id.vars=1:2)
dat2b
# ID Time variable value
# 1 1 20 U1 1
# 2 2 20 U1 2
# 3 3 20 U1 2
# 4 1 20 U2 2
# 5 2 20 U2 5
# 6 3 20 U2 5
# 7 1 20 U3 3
# 8 2 20 U3 9
# 9 3 20 U3 6
# 10 1 20 U4 5
# 11 2 20 U4 4
# 12 3 20 U4 4
And, very similar to @TylerRinker's answer, but not dropping the "times", is to just use sep = ""
to help R guess time and variable names.
dat3 <- reshape(dat, direction = "long", idvar=1:2,
varying=3:ncol(dat), sep = "", timevar="Measure")
dat3
# ID Time Measure U
# 1.20.1 1 20 1 1
# 2.20.1 2 20 1 2
# 3.20.1 3 20 1 2
# 1.20.2 1 20 2 2
# 2.20.2 2 20 2 5
# 3.20.2 3 20 2 5
# 1.20.3 1 20 3 3
# 2.20.3 2 20 3 9
# 3.20.3 3 20 3 6
# 1.20.4 1 20 4 5
# 2.20.4 2 20 4 4
# 3.20.4 3 20 4 4
In all three of those, you end up with four columns, not three, like you describe in your desired output. However, as @ndoogan points out, by doing so, you're loosing information about your data. If you're fine with that, you can always drop that column from the resulting data.frame
quite easily (for example, dat2a <- dat2a[-4]
.
reshape2
covers this sort of transformation. – Epictetusdput()
output of the original example dataframe object IS! – Epictetustidyr::gather()
– Roussel