How do I use sklearn CountVectorizer with both 'word' and 'char' analyzer? http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
I could extract the text features by word or char separately but how do i create a charword_vectorizer
? Is there a way to combine the vectorizers? or use more than one analyzer?
>>> from sklearn.feature_extraction.text import CountVectorizer
>>> word_vectorizer = CountVectorizer(analyzer='word', ngram_range=(1, 2), min_df=1)
>>> char_vectorizer = CountVectorizer(analyzer='char', ngram_range=(1, 2), min_df=1)
>>> x = ['this is a foo bar', 'you are a foo bar black sheep']
>>> word_vectorizer.fit_transform(x)
<2x15 sparse matrix of type '<type 'numpy.int64'>'
with 18 stored elements in Compressed Sparse Column format>
>>> char_vectorizer.fit_transform(x)
<2x47 sparse matrix of type '<type 'numpy.int64'>'
with 64 stored elements in Compressed Sparse Column format>
>>> char_vectorizer.get_feature_names()
[u' ', u' a', u' b', u' f', u' i', u' s', u'a', u'a ', u'ac', u'ar', u'b', u'ba', u'bl', u'c', u'ck', u'e', u'e ', u'ee', u'ep', u'f', u'fo', u'h', u'he', u'hi', u'i', u'is', u'k', u'k ', u'l', u'la', u'o', u'o ', u'oo', u'ou', u'p', u'r', u'r ', u're', u's', u's ', u'sh', u't', u'th', u'u', u'u ', u'y', u'yo']
>>> word_vectorizer.get_feature_names()
[u'are', u'are foo', u'bar', u'bar black', u'black', u'black sheep', u'foo', u'foo bar', u'is', u'is foo', u'sheep', u'this', u'this is', u'you', u'you are']
r'\w{3,}
mean? is it the same as[a-zA-Z0-9_]
? – Oid