The point that 'complete' makes is that in a heap all interior (not leaf) nodes have two children, except where there are no children left -- all the interior nodes are 'complete'. As you add to the heap, the lowest level of nodes is filled (with childless leaf nodes), from the left, before a new level is started. As you remove nodes from the heap, the right-most leaf at the lowest level is removed (and pushed back in at the top). The heap is also perfectly balanced (hurrah!).
A binary heap can be looked at as a binary tree, but the nodes do not have child pointers, and insertion (push) and deletion (pop or from inside the heap) are quite different to those procedures for an actual binary tree.
This is a direct consequence of the way in which the heap is organised. The heap is held as a vector with no gaps between the nodes. The parent of the i'th item in the heap is item (i - 1) / 2
(assuming a binary heap, and assuming the top of the heap is item 0
). The left child of the i'th item is (i * 2) + 1
, and the right child one greater than that. When there are n
nodes in the heap, a node has no left child if (i * 2) + 1
exceeds n
, and no right child if (i * 2) + 2
does.
The heap is a beautiful thing. It's one flaw is that you do need a vector large enough for all entries... unlike a real binary tree, you cannot allocate a node at a time. So if you have a heap for an indefinite number of items, you have to be ready to extend the underlying vector as and when needed -- or run some fragmented structure which can be addressed as if it was a vector.
FWIW: when stepping down the heap, I find it convenient to step to the right child -- (i + 1) * 2
-- if that is < n
then both children are present, if it is == n
only the left child is present, otherwise there are no children.