I have a StructField in a dataframe that is not nullable. Simple example:
import pyspark.sql.functions as F
from pyspark.sql.types import *
l = [('Alice', 1)]
df = sqlContext.createDataFrame(l, ['name', 'age'])
df = df.withColumn('foo', F.when(df['name'].isNull(),False).otherwise(True))
df.schema.fields
which returns:
[StructField(name,StringType,true), StructField(age,LongType,true), StructField(foo,BooleanType,false)]
Notice that the field foo
is not nullable. Problem is that (for reasons I won't go into) I want it to be nullable. I found this post Change nullable property of column in spark dataframe which suggested a way of doing it so I adapted the code therein to this:
import pyspark.sql.functions as F
from pyspark.sql.types import *
l = [('Alice', 1)]
df = sqlContext.createDataFrame(l, ['name', 'age'])
df = df.withColumn('foo', F.when(df['name'].isNull(),False).otherwise(True))
df.schema.fields
newSchema = [StructField('name',StringType(),True), StructField('age',LongType(),True),StructField('foo',BooleanType(),False)]
df2 = sqlContext.createDataFrame(df.rdd, newSchema)
which failed with:
TypeError: StructField(name,StringType,true) is not JSON serializable
I also see this in the stack trace:
raise ValueError("Circular reference detected")
So I'm a bit stuck. Can anyone modify this example in a way that enables me to define a dataframe where column foo
is nullable?