In order to synchronize the rotation between two subplots in mplot3d you can connect the motion_notify_event
to a function that reads the angles from rotated plot and applies it to the respective other plot.
Here is an example from the gallery with the described functionality added.
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
import matplotlib.pyplot as plt
import numpy as np
n_angles = 36
n_radii = 8
radii = np.linspace(0.125, 1.0, n_radii)
angles = np.linspace(0, 2*np.pi, n_angles, endpoint=False)
angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)
x = np.append(0, (radii*np.cos(angles)).flatten())
y = np.append(0, (radii*np.sin(angles)).flatten())
z = np.sin(-x*y)
fig = plt.figure( figsize=(13,6))
fig.subplots_adjust(left=0, right=1, top=1, bottom=0, wspace=0)
ax = fig.add_subplot(1, 2, 1, projection='3d')
ax2 = fig.add_subplot(1, 2, 2, projection='3d')
ax.plot_trisurf(x, y, z, cmap=cm.jet, linewidth=0.2)
ax2.plot_trisurf(x, y, z, cmap=cm.viridis, linewidth=0.5)
def on_move(event):
if event.inaxes == ax:
ax2.view_init(elev=ax.elev, azim=ax.azim)
elif event.inaxes == ax2:
ax.view_init(elev=ax2.elev, azim=ax2.azim)
else:
return
fig.canvas.draw_idle()
c1 = fig.canvas.mpl_connect('motion_notify_event', on_move)
plt.show()
It may make sense to additionally synchronize the zooming utility as well. In this case one may use the following function
def on_move(event):
if event.inaxes == ax:
if ax.button_pressed in ax._rotate_btn:
ax2.view_init(elev=ax.elev, azim=ax.azim)
elif ax.button_pressed in ax._zoom_btn:
ax2.set_xlim3d(ax.get_xlim3d())
ax2.set_ylim3d(ax.get_ylim3d())
ax2.set_zlim3d(ax.get_zlim3d())
elif event.inaxes == ax2:
if ax2.button_pressed in ax2._rotate_btn:
ax.view_init(elev=ax2.elev, azim=ax2.azim)
elif ax2.button_pressed in ax2._zoom_btn:
ax.set_xlim3d(ax2.get_xlim3d())
ax.set_ylim3d(ax2.get_ylim3d())
ax.set_zlim3d(ax2.get_zlim3d())
else:
return
fig.canvas.draw_idle()
shareaxes
kind of functionality as a PR to matplotllib for 3d plots (sort of likesharex
for 2d)? THis would be really cool. – Kantian