The C Standard would allow an implementation to vary the placement of an array object within a structure based upon the number of elements. Among other things, there may be some circumstances where it may be useful to word-align a byte array which would occupy exactly one word, but not to word-align arrays of other sizes. For example, on a system with 8-bit char and 32-bit words, processing a structure such as:
struct foo {
char header;
char dat[4];
};
in a manner that word-aligns dat
may allow an access to dat[i] to be processed by loading a word and shifting it right by a 0, 8, 16, or 24 bits, but such advantages might not be applicable had the structure instead been:
struct foo {
char header;
char dat[5];
};
The Standard was clearly not intended to forbid implementations from laying out structures in such ways, on platforms where doing so would be useful. On the other hand, when the Standard was written, compilers which would place arrays within a structure at offsets that were unaffected by the arrays' sizes would unanimously behave as though array elements that were present in two structures were part of the same Common Initial Sequence, and nothing in the published Rationale for the Standard suggests any intention to discourage such implementations from continuing to behave in such fashion. Code which relied upon such treatment would have been "non-portable", but correct on all implementations which followed common struct layout practices.