This converts your input string to your expected output. It can handle minutes and seconds not being present.
Currently, it does not account for North/South, East/West. If you'll tell me how you'd like those handled, I'll update the answer.
# -*- coding: latin-1 -*-
import re
PATTERN = re.compile(r"""(?P<lat_deg>\d+)° # Latitude Degrees
(?:(?P<lat_min>\d+)')? # Latitude Minutes (Optional)
(?:(?P<lat_sec>\d+)")? # Latitude Seconds (Optional)
(?P<north_south>[NS]) # North or South
,[ ]
(?P<lon_deg>\d+)° # Longitude Degrees
(?:(?P<lon_min>\d+)')? # Longitude Minutes (Optional)
(?:(?P<lon_sec>\d+)")? # Longitude Seconds (Optional)
(?P<east_west>[EW]) # East or West
""", re.VERBOSE)
LAT_FIELDS = ("lat_deg", "lat_min", "lat_sec")
LON_FIELDS = ("lon_deg", "lon_min", "lon_sec")
def parse_dms_string(s, out_type=float):
"""
Convert a string of the following form to a tuple of out_type latitude, longitude.
Example input:
0°25'30"S, 91°7'W
"""
values = PATTERN.match(s).groupdict()
return tuple(sum(out_type(values[field] or 0) / out_type(60 ** idx) for idx, field in enumerate(field_names)) for field_names in (LAT_FIELDS, LON_FIELDS))
INPUT = """0°25'30"S, 91°7'W"""
print parse_dms_string(INPUT) # Prints: (0.42500000000000004, 91.11666666666666)
0°25'30"S, 91°7'W
->0.425
,91.116667
. It seems like the data may or may not have minutes associated. Where there is none then I can assume 0. – Barbiturism