My Haskell project includes an expression evaluator, which for the purposes of this question can be simplified to:
data Expression a where
I :: Int -> Expression Int
B :: Bool -> Expression Bool
Add :: Expression Int -> Expression Int -> Expression Int
Mul :: Expression Int -> Expression Int -> Expression Int
Eq :: Expression Int -> Expression Int -> Expression Bool
And :: Expression Bool -> Expression Bool -> Expression Bool
Or :: Expression Bool -> Expression Bool -> Expression Bool
If :: Expression Bool -> Expression a -> Expression a -> Expression a
-- Reduces an Expression down to the simplest representation.
reduce :: Expression a -> Expression a
-- ... implementation ...
The straightforward approach to implementing this is to write a case
expression to recursively evaluate and pattern match, like so:
reduce (Add x y) = case (reduce x, reduce y) of
(I x', I y') -> I $ x' + y'
(x', y') -> Add x' y'
reduce (Mul x y) = case (reduce x, reduce y) of
(I x', I y') -> I $ x' * y'
(x', y') -> Mul x' y'
reduce (And x y) = case (reduce x, reduce y) of
(B x', B y') -> B $ x' && y'
(x', y') -> And x' y'
-- ... and similarly for other cases.
To me, that definition looks somewhat awkward, so I then rewrote the definition using pattern guards, like so:
reduce (Add x y) | I x' <- reduce x
, I y' <- reduce y
= I $ x' + y'
I think this definition looks cleaner compared to the case
expression, but when defining multiple patterns for different constructors, the pattern is repeated multiple times.
reduce (Add x y) | I x' <- reduce x
, I y' <- reduce y
= I $ x' + y'
reduce (Mul x y) | I x' <- reduce x
, I y' <- reduce y
= I $ x' * y'
Noting these repeated patterns, I was hoping there would be some syntax or structure that could cut down on the repetition in the pattern matching. Is there a generally accepted method to simplify these definitions?
Edit: after reviewing the pattern guards, I've realised they don't work as a drop-in replacement here. Although they provide the same result when x
and y
can be reduced to I _
, they do not reduce any values when the pattern guards do not match. I would still like reduce
to simplify subexpressions of Add
et al.
Expression a -> Expression Int
? – Privetdata Exp a where BinaryOp :: (a->a->a)->(Exp a)->(Exp a)->(Exp a)
etc... – Slate