The C function calling standard allows for a function to be called with zero or more arguments and the number of arguments may or may not match the function interface.
The way this works is that it is up to the caller to adjust the stack after the called function returns rather than the called function adjusting the stack unlike other standards such as Pascal which require the called function to manage the stack adjustment properly.
Because the caller knows what arguments and their types have been pushed onto the stack before the called function is called and the called function does not, it is up to the caller to clear the pushed arguments from the stack after the called function returns.
With updated C standards, the function call interface description has become more complex in order to allow the compiler to detect and report interface problems that the original K&R C standard allowed to go undetected by the compiler.
The standard now is that you specify variable argument lists using elipsis notation of three periods or dots after the last known and specified argument in the called functions interface specification or declaration.
So you would see something like the following for some of the Standard C Library I/O functions:
int sprintf (char *buffer, char *format, ...);
This indicates that the function sprintf requires that the first argument be a char pointer to a buffer, the second argument be a char pointer to a format string, and there may be other additional arguments. In this case any additional arguments would be what are needed to be inserted for the print format specifiers in the format string. If the format string is just a text string with no format specifies (something like %d for an integer for instance) then there would be no other arguments.
The newer C Standards specify a set of functions/macros for the use with variable argument lists, the varg functions. With these functions/macros the called function can step through the variable part of an argument list and process the arguments. These functions look something like the following:
int jFunc (int jj, char *form, ...)
{
va_list myArgs;
int argOne;
va_start (myArgs, form);
argOne = va_arg (myArgs, int);
va_end (myArgs);
return 0;
}
The problem that we have with variable argument lists is that C does not have a way of communicating the variable argument or even how many arguments. So the designer of the function has to provide a mechanism. In the case of the C Standard Library I/O functions this is done with the format that indicates the number of arguments following the format string by specifying format specifiers for each argument. And since there is nothing that does a consistency check, you can end up with a format string that specifies more or less than the actual arguments resulting in either garbage output or less output than expected.
Since modern C compilers have some degree of backwards compatibility for old C source code, that means that you can use some of the older constructs and the compiler will allow it though hopefully with a warning.
The new function interface specifications are designed to reduce the chances of using a function incorrectly. So the new standards recommend that you use the function interface declaration so that the compiler can help you by detecting interface problems and incorrect variable usage in the function call.
However if you want to be a risk taker you do not have to use this safety net so if you like you can just define a function with an empty argument list and wing it.
You might also find an answer I put into this question about currying in C that uses variable argument lists along with a way to determine how many arguments are provided.
...
in signature not an empty one like this – Conversantfoo()
takes - the function might well take a specific number of arguments (and usually that is the case), however the compiler won't help you get that correct. With a declaration such as that, it's the programmer's responsibility to get the number of arguments (and their types) exactly right. – Insuppressible