I want to integrate OpenCV with YOLOv8 from ultralytics
, so I want to obtain the bounding box coordinates from the model prediction. How do I do this?
from ultralytics import YOLO
import cv2
model = YOLO('yolov8n.pt')
cap = cv2.VideoCapture(0)
cap.set(3, 640)
cap.set(4, 480)
while True:
_, frame = cap.read()
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
results = model.predict(img)
for r in results:
for c in r.boxes.cls:
print(model.names[int(c)])
cv2.imshow('YOLO V8 Detection', frame)
if cv2.waitKey(1) & 0xFF == ord(' '):
break
cap.release()
cv2.destroyAllWindows()
I want to display the YOLO annotated image in OpenCV. I know I can use the stream parameter in model.predict(source='0', show=True)
. But I want to continuously monitor the predicted class names for my program, at the same time displaying the image output.
model.predict
? – Cb