I am having difficulties finding a way to properly classify the edges while a breadth-first search on a directed graph.
During a breadth-first or depth-first search, you can classify the edges met with 4 classes:
- TREE
- BACK
- CROSS
- FORWARD
Skiena [1] gives an implementation. If you move along an edge from v1 to v2, here is a way to return the class during a DFS in java, for reference. The parents map returns the parent vertex for the current search, and the timeOf()
method, the time at which the vertex has been discovered.
if ( v1.equals( parents.get( v2 ) ) ) { return EdgeClass.TREE; }
if ( discovered.contains( v2 ) && !processed.contains( v2 ) ) { return EdgeClass.BACK; }
if ( processed.contains( v2 ) )
{
if ( timeOf( v1 ) < timeOf( v2 ) )
{
return EdgeClass.FORWARD;
}
else
{
return EdgeClass.CROSS;
}
}
return EdgeClass.UNCLASSIFIED;
My problem is that I cannot get it right for a Breadth first search on a directed graph. For instance:
The following graph - that is a loop - is ok:
A -> B
A -> C
B -> C
BFSing from A, B will be discovered, then C. The edges eAB and eAC are TREE edges, and when eBC is crossed last, B and C are processed and discovered, and this edge is properly classified as CROSS.
But a plain loop does not work:
A -> B
B -> C
C -> A
When the edge eCA is crossed last, A is processed and discovered. So this edge is incorrectly labeled as CROSS, whether it should be a BACK edge.
There is indeed no difference in the way the two cases are treated, even if the two edges have different classes.
How do you implement a proper edge classification for a BFS on a directed graph?
EDIT
Here an implementation derived from @redtuna answer. I just added a check not to fetch the parent of the root. I have JUnits tests that show it works for directed and undirected graphs, in the case of a loop, a straight line, a fork, a standard example, a single edge, etc....
@Override
public EdgeClass edgeClass( final V from, final V to )
{
if ( !discovered.contains( to ) ) { return EdgeClass.TREE; }
int toDepth = depths.get( to );
int fromDepth = depths.get( from );
V b = to;
while ( toDepth > 0 && fromDepth < toDepth )
{
b = parents.get( b );
toDepth = depths.get( b );
}
V a = from;
while ( fromDepth > 0 && toDepth < fromDepth )
{
a = parents.get( a );
fromDepth = depths.get( a );
}
if ( a.equals( b ) )
{
return EdgeClass.BACK;
}
else
{
return EdgeClass.CROSS;
}
}