(GTX 1080, Tensorflow 1.0.0)
During the training nvidia-smi
output (below) suggests that the GPU utilization is 0% most of the time (despite usage of GPU). Regarding the time I already train, that seems to be the case. Once in a while it peaks up to 100% or similar, for a second though.
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 375.26 Driver Version: 375.26 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce GTX 1080 Off | 0000:01:00.0 On | N/A |
| 33% 35C P2 49W / 190W | 7982MiB / 8110MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 1093 G /usr/lib/xorg/Xorg 175MiB |
| 0 1915 G compiz 90MiB |
| 0 4383 C python 7712MiB |
+-----------------------------------------------------------------------------+
The situation occurs to me as I described in this issue. The problem can be replicated either with the code from that github repository or by following this simple retraining example from tensorflow's website and passing restricted per_process_gpu_memory_fraction (less than 1.0) like that in the session:
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.4
session = tf.Session(config=config, ...)
Question 1: How to really use (utilize) GPU during the training while using <1.0 of the GPU?
Question 2: How to really use full GPU (not setting it to <1.0) with my graphic card?
Help&hints appreciated!