Calculate part of duration that occur in each hour of day
Asked Answered
D

6

13

I have a dataframe with start and end times:

  id          start_time            end_time
1  1 2018-09-02 11:13:00 2018-09-02 11:54:00
2  2 2018-09-02 14:34:00 2018-09-02 14:37:00
3  3 2018-09-02 03:00:00 2018-09-02 03:30:00
4  4 2018-09-02 03:49:00 2018-09-02 03:53:00
5  5 2018-09-02 07:05:00 2018-09-02 08:05:00
6  6 2018-09-02 06:44:00 2018-09-02 06:57:00
7  7 2018-09-02 06:04:00 2018-09-02 08:34:00
8  8 2018-09-02 07:51:00 2018-09-02 08:15:00
9  9 2018-09-02 08:16:00 2018-09-02 08:55:00

From such periods, how can I calculate the total number of minutes that occurred in each hour, each day? E.g. if a period started at 9:45 and ended at 10:15, I want to assign 15 minutes to the 9:00 hour and 15 minutes to the 10:00 hour.

Or checking the hour 06 in the data above, that hour is included in two different rows (periods):

6  6 2018-09-02 06:44:00 2018-09-02 06:57:00
7  7 2018-09-02 06:04:00 2018-09-02 08:34:00

In the first row, 13 minutes should be assigned to 06, and in the second row 56 minutes. Thus, a total of 69 minutes for the hour 06 that date.

Expected output from sample data:

  hourOfDay Day        totalMinutes
  <chr>     <chr>      <drtn>      
1 03        2018-09-02  34 mins    
2 06        2018-09-02  69 mins    
3 07        2018-09-02  124 mins    
4 08        2018-09-02  93 mins    
5 11        2018-09-02  41 mins    
6 14        2018-09-02   3 mins

My attempt: I couldn't make it with lubridate, then I found this old question here. I tried to use POSIXct, but the output is correct for some hours and incorrect for another hours. What am I missing here?

df %>% 
  mutate(minutes = difftime(end_time,start_time),
         hourOfDay = format(as.POSIXct(start_time), "%H"),
         Day = format(as.POSIXct(start_time),"%Y-%m-%d")) %>% 
  group_by(hourOfDay, Day) %>% 
  summarize(totalMinutes = sum(minutes))

Wrong output:

  hourOfDay Day        totalMinutes
  <chr>     <chr>      <drtn>      
1 03        2018-09-02  34 mins    
2 06        2018-09-02 163 mins    
3 07        2018-09-02  84 mins    
4 08        2018-09-02  39 mins    
5 11        2018-09-02  41 mins    
6 14        2018-09-02   3 mins

Sample data :

 df <- data.frame(
      id = c(1,2,3,4,5,6,7,8,9),
    start_time = c("2018-09-02 11:13:00", "2018-09-02 14:34:00",
                     "2018-09-02 03:00:00", "2018-09-02 03:49:00",
                     "2018-09-02 07:05:00", "2018-09-02 06:44:00", "2018-09-02 06:04:00",
                     "2018-09-02 07:51:00", "2018-09-02 08:16:00"),
    end_time = c("2018-09-02 11:54:00", "2018-09-02 14:37:00",
                   "2018-09-02 03:30:00", "2018-09-02 03:53:00",
                   "2018-09-02 08:05:00", "2018-09-02 06:57:00", "2018-09-02 08:34:00",
                   "2018-09-02 08:15:00", "2018-09-02 08:55:00"))
Dysplasia answered 28/5, 2020 at 7:10 Comment(0)
C
3

Here is an alternate solution, similar to Ronak's but without creating a minute-by-minute data-frame.

library(dplyr)
library(lubridate)

    df %>%
      mutate(hour = (purrr::map2(hour(start_time), hour(end_time), seq, by = 1))) %>%
      tidyr::unnest(hour)  %>% mutate(minu=case_when(hour(start_time)!=hour & hour(end_time)==hour ~ 1*minute(end_time),
                                 hour(start_time)==hour & hour(end_time)!=hour ~ 60-minute(start_time),
                                 hour(start_time)==hour & hour(end_time)==hour ~ 1*minute(end_time)-1*minute(start_time),
                                 TRUE ~ 60)) %>% group_by(hour) %>% summarise(sum(minu))

# A tibble: 6 x 2
   hour `sum(minu)`
  <dbl>       <dbl>
1     3          34
2     6          69
3     7         124
4     8          93
5    11          41
6    14           3
Chinkapin answered 28/5, 2020 at 8:31 Comment(0)
M
2

Not the best solution since it expands the data but I think it works :

library(dplyr)
library(lubridate)

df %>%
  mutate_at(-1, ymd_hms) %>%
  mutate(time = purrr::map2(start_time, end_time, seq, by = 'min')) %>%
  tidyr::unnest(time) %>%
  mutate(hour = hour(time), date = as.Date(time)) %>%
  count(date, hour)

# A tibble: 6 x 3
#  date        hour     n
#  <date>     <int> <int>
#1 2018-09-02     3    36
#2 2018-09-02     6    70
#3 2018-09-02     7   124
#4 2018-09-02     8    97
#5 2018-09-02    11    42
#6 2018-09-02    14     4

We create a sequence from start_time to end_time with 1 minute intervals, extract hours and count occurrence of for each date and hour.

Mize answered 28/5, 2020 at 7:46 Comment(5)
@Thanks Ronak, I was thinking to do that, but since I have a TS with almost 1M records that will kill performance of queriesDysplasia
Yes, this probably will. Probably writing a for loop would be a better solution.Mize
@RonakShah Hi, did you notice that your results seem to be one minute off compared to the other solutions (particularly to the one OP accepted)?Sociolinguistics
Ohh...yes! I guess that is because the way the sequence is generated. It counts end time as 1 separate minute whereas in other posts it is not.Mize
Actually the logic is not that straightforward, I noticed myself.Sociolinguistics
D
2

A data.table / lubridate alternative.

library(data.table)
library(lubridate)

setDT(df) 

df[ , ceil_start := ceiling_date(start_time, "hour")]

d = df[ , {
  if(ceil_start > end_time){
    .SD[ , .(start_time, dur = as.double(end_time - start_time, units = "mins"))]
  } else {
    time <- c(start_time,
              seq(from = ceil_start, to = floor_date(end_time, "hour"), by = "hour"),
              end_time)
    .(start = head(time, -1), dur = `units<-`(diff(time), "mins"))
  }
},
by = id]

setorder(d, start_time)
d[ , .(n_min = sum(dur)), by = .(date = as.Date(start_time), hour(start_time))]

#          date hour n_min
# 1: 2018-09-02    3    34
# 2: 2018-09-02    6    69
# 3: 2018-09-02    7   124
# 4: 2018-09-02    8    93
# 5: 2018-09-02   11    41
# 6: 2018-09-02   14     3

Explanation

Convert data.frame to data.table (setDT). Round up start times to nearest hour (ceiling_date(start, "hour")).

if the up-rounded time is larger than end time (if(ceil_start > end_time)), select start time and calculate duration for that hour (as.double(end_time - start_time, units = "mins")).

else, create a sequence from the up-rounded start time, to the down-rounded end time, with an hourly increment (seq(from = ceil_start, to = floor_date(end, "hour"), by = "hour")). Concatenate with start and end times. Return all times except the last (head(time, -1)) and calculate difference between time each step in minutes (`units<-`(diff(time), "mins")).

Order data by start time (setorder(d, start_time)). Sum duration by date and hour d[ , .(n_min = sum(dur)), by = .(date = as.Date(start_time), hour(start_time))].

Dues answered 28/5, 2020 at 9:15 Comment(0)
P
2

Here is an option using data.table::foverlaps:

#create a data.table of hourly intervals
hours <- seq(df[, trunc(min(start_time)-60*60, "hours")],
    df[, trunc(max(end_time)+60*60, "hours")], 
    by="1 hour")
hourly <- data.table(start_time=hours[-length(hours)], end_time=hours[-1L], 
    key=cols)

#set keys and find overlaps
#and then calculate overlapping minutes
setkeyv(df, cols)
foverlaps(hourly, df, nomatch=0L)[, 
    sum(as.numeric(pmin(end_time, i.end_time) - pmax(start_time, i.start_time))) / 60, 
    .(i.start_time, i.end_time)]

output:

          i.start_time          i.end_time  V1
1: 2018-09-02 02:00:00 2018-09-02 03:00:00   0
2: 2018-09-02 03:00:00 2018-09-02 04:00:00  34
3: 2018-09-02 06:00:00 2018-09-02 07:00:00  69
4: 2018-09-02 07:00:00 2018-09-02 08:00:00 124
5: 2018-09-02 08:00:00 2018-09-02 09:00:00  93
6: 2018-09-02 11:00:00 2018-09-02 12:00:00  41
7: 2018-09-02 14:00:00 2018-09-02 15:00:00   3

data:

df <- data.frame(
    id = c(1,2,3,4,5,6,7,8,9),
    start_time = c("2018-09-02 11:13:00", "2018-09-02 14:34:00",
        "2018-09-02 03:00:00", "2018-09-02 03:49:00",
        "2018-09-02 07:05:00", "2018-09-02 06:44:00", "2018-09-02 06:04:00",
        "2018-09-02 07:51:00", "2018-09-02 08:16:00"),
    end_time = c("2018-09-02 11:54:00", "2018-09-02 14:37:00",
        "2018-09-02 03:30:00", "2018-09-02 03:53:00",
        "2018-09-02 08:05:00", "2018-09-02 06:57:00", "2018-09-02 08:34:00",
        "2018-09-02 08:15:00", "2018-09-02 08:55:00"))

library(data.table)
cols <- c("start_time", "end_time")
fmt <- "%Y-%m-%d %T"
setDT(df)[, (cols) := lapply(.SD, as.POSIXct, format=fmt), .SDcols=cols]
Parole answered 28/5, 2020 at 10:22 Comment(2)
@Henrik, thanks. I always have the impression that non-equi exists before foverlaps. But I might be mistaken.Parole
Thanks! I always think of foverlaps with 4 non equi joins.Parole
S
2

Here comes a base R solution, which "reshapes" such lines into a long format whose time interval is not in the same hour.

It uses a helper function doTime that generates time sequences.

This updated version calculates with numeric dates (seconds) and internally uses vapply rather than sapply for sake of performance.

decompDayHours <- function(data) {
  ## convert dates into POSIXct if they're not
  if (!all(sapply(data[c("start_time", "end_time")], class) == "POSIXct")) {
    data[c("start_time", "end_time")] <- 
      lapply(data[c("start_time", "end_time")], as.POSIXct)
  }
  doTime2 <- function(x, date) {
    ## helper function generating time sequences
    xd <- as.double(x) - date
    hf <- floor(xd/3600)
    hs <- `:`(hf[1], hf[2])[-1]*3600
    `attr<-`(mapply(`+`, date, hs), "hours", hf)
    }
  ## Reshape time intervals not in same hour
  M <- do.call(rbind, sapply(1:nrow(data), function(i) {
    h <- vapply(2:3, function(s) as.double(substr(data[i, s], 12, 13)), 0)
    date <- as.double(as.POSIXct(format(data[i, 2], "%F")))
    if (h[1] != h[2]) {
      hr <- c(as.double(data[i, 2]), dt2 <- doTime2(data[i, 2:3], date))
      fh <- attr(dt2, "hours")
      fhs <- fh[1]:fh[2]
      r1 <- t(vapply(seq_along(hr[-1]) - 1, function(j)
        c(id=data[i, 1], start_time=hr[1 + j], 
          end_time=unname(hr[2 + j]), date=date, hour=fhs[j + 1]), c(0, 0, 0, 0, 0)))
      rbind(r1, 
            c(id=data[i, 1], start_time=r1[nrow(r1), 3], 
              end_time=as.double(data[i, 3]), date=date, hour=fhs[length(fhs)]))
    } else {
      c(vapply(data[i, ], as.double, 0), date=date, hour=el(h))
    }
  }))
  ## calculating difftime
  DF <- cbind.data.frame(M, diff=(M[,3] - M[,2])/60)
  ## aggregating
  res <- aggregate(diff ~ date + hour, DF, sum)
  res <- transform(res, date=as.POSIXct(res$date, origin="1970-01-01"))
  res[order(res$date, res$hour), ]
}

Result

decompDayHours(df1)
#         date hour diff
# 1 2018-09-02    3   34
# 2 2018-09-02    6   69
# 3 2018-09-02    7  124
# 4 2018-09-02    8   93
# 5 2018-09-02   11   41
# 6 2018-09-02   14    3

decompDayHours(df2)
#          date hour diff
# 1  2018-09-02    3   30
# 9  2018-09-02   11   41
# 10 2018-09-02   14    3
# 2  2018-09-03    3    4
# 3  2018-09-03    6   13
# 5  2018-09-03    7   55
# 7  2018-09-03    8    5
# 4  2018-09-04    6   56
# 6  2018-09-04    7   69
# 8  2018-09-04    8   88

Benchmarks

I was curious and did a vanilla-benchmark of all solutions so far. Date columns are converted to POSIXct. Not all solutions did scale up to the extended data sets, though.

## df1
# Unit: milliseconds
#         expr        min         lq       mean     median         uq       max neval    cld
#    dplyr.ron  20.022136  20.445664  20.789341  20.566980  20.791374  25.04604   100     e 
#    dplyr.bas 103.827770 104.705059 106.631214 105.461541 108.365255 127.12306   100      f
#    dplyr.otw   8.972915   9.293750   9.623298   9.464182   9.721488  14.28079   100 ab    
# data.tbl.hen   9.258668   9.708603   9.960635   9.872784  10.002138  14.14301   100  b    
# data.tbl.chi  10.053165  10.348614  10.673600  10.553489  10.714481  15.43605   100   c   
#       decomp   8.998939   9.259435   9.372276   9.319774   9.392999  13.13701   100 a     
#   decomp.old  15.567698  15.795918  16.129622  15.896570  16.029114  20.35637   100    d  

## df2
# Unit: milliseconds
#         expr        min         lq       mean     median         uq       max neval   cld
#    dplyr.ron  19.982590  20.411347  20.949345  20.598873  20.895342  27.24736   100    d 
#    dplyr.bas 103.513187 104.958665 109.305938 105.942346 109.538759 253.80958   100     e
#    dplyr.otw         NA         NA         NA         NA         NA        NA    NA    NA
# data.tbl.hen   9.392105   9.708858  10.077967   9.922025  10.121671  15.02859   100 ab   
# data.tbl.chi  11.308439  11.701862  12.089154  11.909543  12.167486  16.46731   100  b   
#       decomp   9.111200   9.317223   9.496347   9.398229   9.574146  13.46945   100 a    
#   decomp.old  15.561829  15.838653  16.163180  16.031282  16.221232  20.41045   100   c  

## df3
# Unit: milliseconds
#         expr         min          lq        mean      median          uq         max neval   cld
#    dplyr.ron   382.32849   385.27367   389.42564   388.21884   392.97421   397.72959     3  b   
#    dplyr.bas 10558.87492 10591.51307 10644.58889 10624.15122 10687.44588 10750.74054     3     e
#    dplyr.otw          NA          NA          NA          NA          NA          NA    NA    NA
# data.tbl.hen          NA          NA          NA          NA          NA          NA    NA    NA
# data.tbl.chi    12.85534    12.91453    17.23170    12.97372    19.41988    25.86605     3 a    
#       decomp   785.81346   795.86114   811.73947   805.90882   824.70247   843.49612     3   c  
#   decomp.old  1564.06747  1592.72370  1614.21763  1621.37992  1639.29271  1657.20550     3    d 

Data:

## OP data
df1 <- structure(list(id = c(1, 2, 3, 4, 5, 6, 7, 8, 9), start_time = c("2018-09-02 11:13:00", 
"2018-09-02 14:34:00", "2018-09-02 03:00:00", "2018-09-02 03:49:00", 
"2018-09-02 07:05:00", "2018-09-02 06:44:00", "2018-09-02 06:04:00", 
"2018-09-02 07:51:00", "2018-09-02 08:16:00"), end_time = c("2018-09-02 11:54:00", 
"2018-09-02 14:37:00", "2018-09-02 03:30:00", "2018-09-02 03:53:00", 
"2018-09-02 08:05:00", "2018-09-02 06:57:00", "2018-09-02 08:34:00", 
"2018-09-02 08:15:00", "2018-09-02 08:55:00")), class = "data.frame", row.names = c(NA, 
-9L))

## OP data, modified for alternating dates
df2 <- structure(list(id = 1:9, start_time = c("2018-09-02 11:13:00", 
"2018-09-02 14:34:00", "2018-09-02 03:00:00", "2018-09-03 03:49:00", 
"2018-09-03 07:05:00", "2018-09-03 06:44:00", "2018-09-04 06:04:00", 
"2018-09-04 07:51:00", "2018-09-04 08:16:00"), end_time = c("2018-09-02 11:54:00", 
"2018-09-02 14:37:00", "2018-09-02 03:30:00", "2018-09-03 03:53:00", 
"2018-09-03 08:05:00", "2018-09-03 06:57:00", "2018-09-04 08:34:00", 
"2018-09-04 08:15:00", "2018-09-04 08:55:00")), class = "data.frame", row.names = c("1", 
"2", "3", "4", "5", "6", "7", "8", "9"))

## df2 sampled to 1k rows
set.seed(42)
df3 <- df2[sample(1:nrow(df2), 1e3, replace=T), ]

Old version:

# decompDayHours.old <- function(df) {
#   df[c("start_time", "end_time")] <- 
#       lapply(df[c("start_time", "end_time")], as.POSIXct)
#   doTime <- function(x) {
#     ## helper function generating time sequences
#     x <- as.POSIXct(sapply(x, strftime, format="%F %H:00"))
#     seq.POSIXt(x[1], x[2], "hours")[-1]
#   }
#   ## Reshape time intervals not in same hour
#   df.long <- do.call(rbind, lapply(1:nrow(df), function(i) {
#     if (substr(df[i, 2], 12, 13) != substr(df[i, 3], 12, 13)) {
#       tt <- c(df[i, 2], doTime(df[i, 2:3]))
#       r <- lapply(seq_along(tt[-1]) - 1, function(j) 
#         data.frame(id=df[i,1], start_time=tt[1 + j], end_time=tt[2 + j]))
#       rr <- do.call(rbind, r)
#       rbind(rr, data.frame(id=df[i, 1], start_time=rr[nrow(rr), 3], end_time=df[i, 3]))  
#     } else {
#       df[i, ] 
#     }
#   }))
#   ## calculating difftime
#   df.long$diff <- apply(df.long[-1], 1, function(x) abs(difftime(x[1], x[2], units="mins")))
#   ## aggregating
#   with(df.long, aggregate(list(totalMinutes=diff), 
#                           by=list(Day=as.Date(start_time), 
#                                   hourOfDay=substr(start_time, 12, 13)), 
#                           FUN=sum))[c(2, 1, 3)]
# }
Sociolinguistics answered 28/5, 2020 at 12:44 Comment(1)
That is great. Thanks man, I was planning to do the same to check all solutions performance.Dysplasia
U
0

An alternative solution that does not expand the data, but requires a helper function:

library(dplyr)
library(lubridate)

count_minutes <- function(start_time, end_time) {
  time_interval <- interval(start_time, end_time)

  start_hour <- floor_date(start_time, unit = "hour")
  end_hour <- ceiling_date(end_time, unit = "hour")
  diff_hours <- as.double(difftime(end_hour, start_hour, "hours"))

  hours <- start_hour + hours(0:diff_hours)
  hour_intervals <- int_diff(hours)
  minutes_per_hour <- as.double(intersect(time_interval, hour_intervals), units = "minutes")

  hours <- hours[1:(length(hours)-1)]
  tibble(Day = date(hours),
         hourOfDay = hour(hours),
         totalMinutes = minutes_per_hour)
}


df %>% 
  mutate(start_time = as_datetime(start_time),
         end_time = as_datetime(end_time)) %>% 
  as_tibble() %>% 
  mutate(minutes_per_hour = purrr::map2(start_time, end_time, count_minutes)) %>% 
  unnest(minutes_per_hour) %>% 
  group_by(Day, hourOfDay) %>% 
  summarise(totalMinutes = sum(totalMinutes)) %>%
  ungroup()

# A tibble: 6 x 3
#   Day        hourOfDay totalMinutes
#   <date>         <int>        <dbl>
# 1 2018-09-02         3           34
# 2 2018-09-02         6           69
# 3 2018-09-02         7          124
# 4 2018-09-02         8           93
# 5 2018-09-02        11           41
# 6 2018-09-02        14            3

The helper function counts for every hour within one pair of start_time, end_time how many minutes it contains, and returns this as a tibble. This can then be applied for every such pair in your data, and unnested and summarized to calculate the totals.

Uranie answered 28/5, 2020 at 8:14 Comment(0)

© 2022 - 2025 — McMap. All rights reserved.