This seems to be one of the common questions on here (1, 2, 3), but I am still struggling to define the right shape for input to PyTorch conv1D.
I have text sequences of length 512 (number of tokens per sequence) with each token being represented by a vector of length 768 (embedding). The batch size I am using is 6.
So my input tensor to conv1D is of shape [6, 512, 768].
input = torch.randn(6, 512, 768)
Now, I want to convolve over the length of my sequence (512) with a kernel size of 2 using the conv1D layer from PyTorch.
Understanding 1:
I assumed that "in_channels" are the embedding dimension of the conv1D layer. If so, then a conv1D layer will be defined in this way where
in_channels = embedding dimension (768)
out_channels = 100 (arbitrary number)
kernel = 2
convolution_layer = nn.conv1D(768, 100, 2)
feature_map = convolution_layer(input)
But with this assumption, I get the following error:
RuntimeError: Given groups=1, weight of size 100 768 2, expected input `[4, 512, 768]` to have 768 channels, but got 512 channels instead
Understanding 2:
Then I assumed that "in_channels" is the sequence length of the input sequence. If so, then a conv1D layer will be defined in this way where
in_channels = sequence length (512)
out_channels = 100 (arbitrary number)
kernel = 2
convolution_layer = nn.conv1D(512, 100, 2)
feature_map = convolution_layer(input)
This works fine and I get an output feature map of dimension [batch_size, 100, 767]
. However, I am confused. Shouldn't the convolutional layer convolve over the sequence length of 512 and output a feature map of dimension [batch_size, 100, 511]
?
I will be really grateful for your help.