I'm relatively new to python and I'm confused about the performance of two relatively simple blocks of code. The first function generates a prime factorization of a number n given a list of primes. The second generates a list of all factors of n. I would have though prime_factor
would be faster than factors
(for the same n), but this is not the case. I'm not looking for better algorithms, but rather I would like to understand why prime_factor
is so much slower than factors
.
def prime_factor(n, primes):
prime_factors = []
i = 0
while n != 1:
if n % primes[i] == 0:
factor = primes[i]
prime_factors.append(factor)
n = n // factor
else: i += 1
return prime_factors
import math
def factors(n):
if n == 0: return []
factors = {1, n}
for i in range(2, math.floor(n ** (1/2)) + 1):
if n % i == 0:
factors.add(i)
factors.add(n // i)
return list(factors)
Using the timeit module,
{ i:factors(i) for i in range(1, 10000) }
takes 2.5 seconds
{ i:prime_factor(i, primes) for i in range(1, 10000) }
takes 17 seconds
This is surprising to me. factors
checks every number from 1 to sqrt(n), while prime_factor
only checks primes. I would appreciate any help in understanding the performance characteristics of these two functions.
Thanks
Edit: (response to roliu)
Here is my code to generate a list of primes from 2 to up_to
:
def primes_up_to(up_to):
marked = [0] * up_to
value = 3
s = 2
primes = [2]
while value < up_to:
if marked[value] == 0:
primes.append(value)
i = value
while i < up_to:
marked[i] = 1
i += value
value += 2
return primes
primes
you supply toprime_factors()
? – Acciaccatura