I see that CUDA doesn't allow for classes with virtual functions to be passed into kernel functions. Are there any work-arounds to this limitation?
I would really like to be able to use polymorphism within a kernel function.
Thanks!
I see that CUDA doesn't allow for classes with virtual functions to be passed into kernel functions. Are there any work-arounds to this limitation?
I would really like to be able to use polymorphism within a kernel function.
Thanks!
The most important part of Robert Crovella's comment is:
The objects simply need to be created on the device.
So keeping that in mind, I was dealing with situation where I had an abstract class Function
and then some implementations of it encapsulating different function and its evaluation. This is the simplified version of my code how I achieved polymorphism in my situation, but I am not saying it cannot be done better... It will hopefully help you to get the idea:
class Function
{
public:
__device__ Function() {}
__device__ virtual ~Function() {}
__device__ virtual void Evaluate(const real* __restrict__ positions, real* fitnesses, const SIZE_TYPE particlesCount) const = 0;
};
class FunctionRsj : public Function
{
private:
SIZE_TYPE m_DimensionsCount;
SIZE_TYPE m_PointsCount;
real* m_Y;
real* m_X;
public:
__device__ FunctionRsj(const SIZE_TYPE dimensionsCount, const SIZE_TYPE pointsCount, real* configFileData)
: m_DimensionsCount(dimensionsCount),
m_PointsCount(pointsCount),
m_Y(configFileData),
m_X(configFileData + pointsCount) {}
__device__ ~FunctionRsj()
{
// m_Y points to the beginning of the config
// file data, use it for destruction as this
// object took ownership of configFilDeata.
delete[] m_Y;
}
__device__ void Evaluate(const real* __restrict__ positions, real* fitnesses, const SIZE_TYPE particlesCount) const
{
// Implement evaluation of FunctionRsj here.
}
};
__global__ void evaluate_fitnesses(
const real* __restrict__ positions,
real* fitnesses,
Function const* const* __restrict__ function,
const SIZE_TYPE particlesCount)
{
// This whole kernel is just a proxy as kernels
// cannot be member functions.
(*function)->Evaluate(positions, fitnesses, particlesCount);
}
__global__ void create_function(
Function** function,
SIZE_TYPE dimensionsCount,
SIZE_TYPE pointsCount,
real* configFileData)
{
// It is necessary to create object representing a function
// directly in global memory of the GPU device for virtual
// functions to work correctly, i.e. virtual function table
// HAS to be on GPU as well.
if (threadIdx.x == 0 && blockIdx.x == 0)
{
(*function) = new FunctionRsj(dimensionsCount, pointsCount, configFileData);
}
}
__global__ void delete_function(Function** function)
{
delete *function;
}
int main()
{
// Lets just assume d_FunctionConfigData, d_Positions,
// d_Fitnesses are arrays allocated on GPU already ...
// Create function.
Function** d_Function;
cudaMalloc(&d_Function, sizeof(Function**));
create_function<<<1, 1>>>(d_Function, 10, 10, d_FunctionConfigData);
// Evaluate using proxy kernel.
evaluate_fitnesses<<<
m_Configuration.GetEvaluationGridSize(),
m_Configuration.GetEvaluationBlockSize(),
m_Configuration.GetEvaluationSharedMemorySize()>>>(
d_Positions,
d_Fitnesses,
d_Function,
m_Configuration.GetParticlesCount());
// Delete function object on GPU.
delete_function<<<1, 1>>>(d_Function);
}
new
or malloc
within a kernel or device function a huge performance hit? –
Leahy malloc
or new
would have hurt the performance, I would not care much. I made a comparison with simple approach without abstract class, creating function on CPU and then using the cudaMemcpy
but the performance was almost the same. I guess implement the solution and optimize only if it is necessary. –
Townspeople __device__
keyword ? If so why it is necessary. –
Masterwork © 2022 - 2024 — McMap. All rights reserved.